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An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid
phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations
for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has
been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid
phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic
type, which imply the transition to complete solute trapping only asymptotically at an infinite interface
velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic
type and describes the transition to complete solute trapping and diffusionless solidification at a finite
interface velocity in accordance with experimental data and molecular dynamic simulation.
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1. Introduction

Solidification under industrial conditions often involves ex-
tremely fast heat and mass transfer at very small time and length
scales [1–12], which results in large thermal and concentration
gradients and thus induces viscous stresses ahead of the moving
solid-liquid interface. The stresses, appeared due to inhomogene-
ity in the field of temperature and concentration, essentially affect
the structural formation of the resulting solid phase. The mecha-
nism of the rapid solidification may be studied more completely
if one takes into account the changing stress distribution during
the crystallization process. The large thermal and concentration
gradients accompanying the phase change processes imply that
the processes occur under far from equilibrium condition and the
appropriate non-equilibrium approach should be used. The devia-
tion from equilibrium conditions can be characterized through the
partition (segregation) coefficient K , which is defined as the ra-
tio of the solid concentration C S to the liquid concentration CL

at the interface. The local nonequilibrium diffusion model (LNDM)
[6–9] uses the local-nonequilibrium diffusion equation of hyper-
bolic type instead of the classical local-equilibrium diffusion equa-
tion of parabolic type. This allows LNDM to describe some im-
portant features of rapid solidification at high interface velocity
that cannot be explained in the framework of the classical local-
equilibrium theory. For example, LNDM predicts that the transition
to diffusionless solidification with complete solute trapping K = 1
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occurs at a finite interface velocity V . The result is in agreement
with experimental data [4–9] and references therein, molecular
dynamic simulations [3], and phase-field-crystal model [4]. In con-
trast, the classical, local equilibrium approach predicts that K → 1
only asymptotically when the interface velocity V → ∞.

Most studies of rapid solidification to date have focused on
solidification near the melting point, where the interface tempera-
ture is close to the melting temperature. In recent years, both sci-
entific and practical interest to rapid solidification has been further
motivated by the potential to fabricate more advanced materials
at deep undercooling such as bulk metallic glasses and nanocrys-
talline materials [13]. As the sample is cooled, the viscosity in-
creases and the viscose stresses near the interface are significant.
It implies that the diffusion-stress coupling plays an important role
in solidification at large interface undercooling when the solidifi-
cation occurs at far from equilibrium conditions. The purpose of
this work is to present an analytical model which is based of the
local nonequilibrium approach and thus describes the influence of
the diffusion-stress coupling on solute diffusion and solute parti-
tioning during solidification under far from equilibrium conditions.

2. Diffusion-stress coupling model

It is well known that non-Fickian diffusion effects, such as
case-II and super-case-II diffusion, two-stage sorption, and pseudo-
Fickian diffusion, begin to play an important part in polymers and
other viscous liquids especially near and below glass transition.
The anomalous behavior is usually interpreted as the coupling of
viscous stresses and diffusion. During diffusion of small molecules
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in a viscous solution, this coupling, resulting from the swelling
due to the solvent, produces a relative motion between neighbor-
ing molecules of the solvent, whose mutual friction will emerge
in a viscous stress [14]. With allowance for relaxation processes of
both the diffusion flux J and the viscous pressure tensor P , the
evolution equations for fluxes have the form [14,15]

J + τ
∂ J

∂t
= −D

∂C

∂x
+ β D̄T

∂ P

∂x
(1)

P + τp
∂ P

∂t
= βηe T

∂ J

∂x
(2)

where τ is relaxation time of J , τp is relaxation time of P , ξ and η
are bulk and shear viscosity, respectively, ηe = 4η/3+ξ , β is a cou-
pling constant describing interaction between diffusion and stress,
D is diffusion coefficient, D̄ = D(∂μ/∂C)−1, μ is chemical poten-
tial. Elimination of P from these equations results in the evolution
equation for diffusion flux

J + (τp + τ )
∂ J

∂t
+ τpτ

∂2 J

∂t2
= −D

∂C

∂x
− τp D

∂2C

∂t∂x
+ δ2 ∂2 J

∂x2
(3)

where δ = βT (D̄ηe)
1/2 is the diffusion-stress correlation length.

Combining this equation with the mass conservation law ∂C/∂t =
−∂ J/∂x, we obtain diffusion equation in the form

∂C

∂t
+ (τp + τ )

∂2C

∂t2
+ τpτ

∂3C

∂t3
= D

∂2C

∂x2
+ l2

∂3C

∂t∂x2
(4)

where l = (δ2 + τp D)1/2 is the effective correlation length. Eqs. (3)
and (4) demonstrate that the diffusion-stress coupling leads to the
nonlocal diffusion effects, which are described by the additional
time and mixed derivatives. The model includes the characteristic
scales of non-locality: time scales τ and τp – relaxation times to
local equilibrium; and space scale l (or δ) – correlation length. The
nonlocal diffusion equation (4) is of hyperbolic type. It predicts
that the discontinuity imposed by the sudden jump of concen-
tration at the boundary of a semi-infinite system propagates at a
finite velocity

V ∗
D = [(

δ2 + Dτp
)
/ττp

]1/2
(5)

which is usually called the diffusive velocity [4–9]. This property
of the hyperbolic equation corrects the paradox of infinite propa-
gation velocity associated with the classical diffusion equation of
parabolic type, which results from Eq. (4) at τp = τ = 0 and l = 0.
Let us consider some other important limiting cases of Eq. (4).

2.1. Zero correlation and diffusion relaxation effects

When nonlocal and diffusion relaxation effects can be ignored,
i.e. l = 0 and τ = 0, Eq. (4) reduces to

∂C

∂t
+ τp

∂2C

∂t2
= D

∂2C

∂x2
(6)

This equation, as well as Eq. (4), is of hyperbolic type. It is widely
known in heat conduction theory [10,12,14,16–19]. The diffusive
velocity associated with Eq. (6) is V D = (D/τp)1/2, which differs
from Eq. (5) due to the nonlocal and diffusion relaxation effects.

2.2. Nonzero correlation length

Usually the diffusion relaxation process is much faster than the
stress relaxation process, i.e. τp > 0 and l > 0, but τ = 0. In this
case Eq. (4) reduces to

∂C

∂t
+ τp

∂2C

∂t2
= D

∂2C

∂x2
+ l2

∂3C

∂t∂x2
(7)

This equation is of parabolic type due to the addition mixed
derivative (last term in Eq. (7)) in comparison with the hyperbolic
equation (6), i.e. from the mathematical point of view the nonzero
correlation length l transforms the type of diffusion equation from
hyperbolic to parabolic. Physically it implies that the nonlocal ef-
fects, arising due to the nonzero correlation length, smooth the
imposed discontinuity, creating a continuous wave structure when
the information of a change in the concentration at x = 0 is felt ev-
erywhere immediate even at x → ∞. It implies an infinite diffusive
velocity. However, in spite of this inconsistency with the principle
of causality, the diffusion equations of parabolic type can be suc-
cessfully used to study relatively slow processes with characteristic
velocity V � V D . At high characteristic velocities V ∼ V D , the dif-
fusion equation of hyperbolic type (4) (or Eq. (6)) should be used.
Note that Eq. (7) is analogous to the heat conduction equation,
which arises in the two-temperatures systems [16–18].

3. Steady-state regimes

In this section we consider concentration profiles of solute
ahead of a planar phase interface moving with constant velocity
V . Such profiles arise in many practically important applications
such as alloy solidification [1–9], melting phenomena [10,12,18],
colloidal crystallization [11], frontal polymerization [15] etc. In a
reference frame, attached to the moving interface, Eq. (4) takes the
form

∂C

∂t
+ V

∂C

∂x
+ τp

∂2C

∂t2
+ τp V 2 ∂2C

∂x2

= D
∂2C

∂x2
+ l2

∂3C

∂t∂x2
+ l2 V

∂3C

∂x3
(8)

This equation can be used to study the interface stability with
allowance for the coupling between the diffusion and viscous
stresses and this will be done elsewhere. For our purpose it is
enough to consider the steady-state version of Eq. (8), which is
given as

l2 V
d3C

dx3
+ D

(
1 − V 2/V 2

D

)d2C

dx2
− V

dC

dx
= 0 (9)

Heat conduction equations analogous to Eq. (9) arises in the two
temperature systems in connection with Stefan problem [18]. The
eigenvalues for Eq. (9) are given as [18]

λ1,2 = D(V 2/V 2
D − 1) ± [D2(1 − V 2/V 2

p)2 + 4l2 V 2]1/2

2l2 V
;

λ3 = 0 (10)

The boundary conditions for solute concentration in the liquid
phase are: C(x) → C0 far from the interface (x → ∞), where C0
is the initial concentration, and C(0) = Ci , where Ci the concentra-
tion at the interface x = 0.

3.1. Classical (Fickian) diffusion

Concentration profiles for the steady-state regime V = const,
obtained from the classical diffusion equation (Eq. (9) with l → 0
and V D → ∞) has the well-known form

C(x) = (Ci − C0)exp(−xV /D) + C0 (11)

where D/V represents the characteristic width of the diffusion
layer ahead of the moving interface. Note that in this case the dif-
fusion layer ahead of the moving interface exists for any value of
interface velocity and asymptotically goes to zero only at V → ∞.
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