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Fractional standard and sine maps are proposed by using the discrete fractional calculus. The chaos
behaviors are then numerically discussed when the difference order is a fractional one. The bifurcation
diagrams and the phase portraits are presented, respectively.
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1. Introduction

As a reliable tool for mathematical modeling, the fractional cal-
culus has been extensively used in a large range of physical phe-
nomena and gained much fruitful results in the past decades [1–5].
In the nature, social and computer science, a lot of discrete non-
linear problems and the discrete dynamics behaviors possess long-
range interaction traits. Researchers are frequently undertaking to
develop the methods and theories from the fractional calculus to
the discrete cases. Some efforts [6–10] have been made in this
topic.

In the frame of the time scale theory [11], the discrete frac-
tional calculus (DFC) [12–14] was proposed to describe the dy-
namics of the discrete time. It was pointed out that the DFC is the
development of the theory of the fractional calculus on time scales
[12]. In view of this point, some other works have been done, such
as the Taylor series [15], the definitions of the fractional differ-
ences and their properties [16,17], the Laplace transform [18] and
the existence results [19,20]. However, less work was contributed
to the aspects of the dynamics behaviors.

In order to deeply understand the background of the discrete
dynamics behaviors, our main objective is to introduce applica-
tions of the discrete fractional calculus on an arbitrary time scale
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[12–14] and use the theories of delta difference equations to reveal
the discrete chaos behaviors of the fractionalized standard map.
The Letter is organized as follows: Section 2 introduces the defini-
tions and the properties of the DFC; Section 3 presents fractional
sine map and standard maps on time scales; From the discrete in-
tegral expression, Section 4 gives the discrete chaotical solutions
and the phase portraits of the maps while the difference orders
while the coefficients are changing.

2. Preliminaries

Let’s firstly revisit briefly the definitions of the fractional calcu-
lus [1–5].

Definition 2.1. Let f (t) be a function of class C, i.e. piecewise con-
tinuous on (t0,+∞) and integrable on any finite subinterval of
(t0,+∞). Then for t > 0, the Riemann–Liouville integral of f (t) of
α order is defined as

t0 Iαt f (t) = 1

�(α)

t∫
t0

(t − τ )α−1 f (τ )dτ (1)

where α is a positive real number and �(·) is the Gamma function.

Definition 2.2. Let α be a positive real number, m − 1 < α � m,
m ∈ N

+ , and f (m)(t) exist and be a function of class C. Then the
Caputo fractional derivative of f (t) of order α is defined as

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.12.010

http://dx.doi.org/10.1016/j.physleta.2013.12.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:wuguocheng@gmail.com
mailto:dumitru@cankaya.edu.tr
http://dx.doi.org/10.1016/j.physleta.2013.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2013.12.010&domain=pdf


G.-C. Wu et al. / Physics Letters A 378 (2014) 484–487 485

C
0 Dα

t f (t) = 0 Im−α
t f (m)(t), t > 0. (2)

We can mention the above definitions as the continuous fractional
calculus. For the Caputo derivative of the power function tμ , μ > 0,
if 0 � m − 1 < α � m < μ + 1, then we have

C
0 Dα

t tμ = �(μ + 1)

�(μ − α + 1)
tμ−α, t > 0. (3)

Considering the DFC, the defined function f (t) is changed as a
sequence f (n). Let Na denotes the isolated time scale and Na =
{a,a + 1,a + 2, . . .} (a ∈ R fixed). The difference operator � is de-
fined as � f (n) = f (n + 1) − f (n).

Definition 2.3. (See [12].) Let u: Na → R and 0 < ν be given. Then
the fractional sum of ν order is defined by

�−ν
a u(t) := 1

�(ν)

t−ν∑
s=a

(
t − σ(s)

)(ν−1)
u(s), t ∈Na+ν (4)

where a is the starting point, σ(s) = s + 1 and t(ν) is the falling
function defined as

t(ν) = �(t + 1)

�(t + 1 − ν)
. (5)

Definition 2.4. (See [16].) For 0 < ν,ν /∈N and u(t) defined on Na ,
the Caputo-like delta difference is defined by

C �ν
a u(t) := �

−(m−ν)
a �mu(t)

= 1

�(m − ν)

t−(m−ν)∑
s=a

(
t − σ(s)

)(m−ν−1)
u(s),

t ∈Na+m−ν, m = [ν] + 1, (6)

where ν is the difference order.

Theorem 2.5. (See [19].) For the delta fractional difference equation

C �ν
a u(t) = f

(
t + ν − 1, u(t + ν − 1)

)
,

�ku(a) = uk, m = [ν] + 1, k = 0, . . . ,m − 1, (7)

the equivalent discrete integral equation can be obtained as

u(t) = u0(t) + 1

�(ν)

t−ν∑
s=a+m−ν

(
t − σ(s)

)(ν−1)

× f
(
s + ν − 1, u(s + ν − 1)

)
, t ∈Na+m (8)

where the initial iteration reads

u0(t) =
m−1∑
k=0

(t − a)(k)

k! �ku(a). (9)

The complex difference equation with long-term memory is ob-
tained here. It can reduce to the classical one for the difference
order ν = 1 but the integer one doesn’t hold the discrete mem-
ory. From Eq. (6) to Eq. (8), the domain is changed from Na+m−ν

to Na+m and the function u(t) is preserved to define on the iso-
lated time scale Na in the fractional sums. We can see that the
discrete fractional calculus is a crucial tool in the initialization of
the fractional difference equations.

3. Fractional sine and standard maps

Directly from the fractional calculus, Tarasov [8] investigated
the maps derived from the fractional differential equations and
discussed the chaotical behaviors of the fractional standard map.
In this Letter, we suggest the application of the DFC to fractional
generalizations of the discrete maps. For example, consider the one
dimensional sine map

xn+1 = xn + μ sin(xn) (10)

where μ is the amplitude of the pulses in the motion of equation.
Eq. (10) can be rewritten as

�x(n) = μ sin
(
x(n)

)
. (11)

From the discrete fractional calculus, the fractional one can be
given as

C�ν
a x(t) = μ sin

(
x(t + ν − 1)

)
, 0 < ν < 1, t ∈Na+1−ν (12)

where ν is the difference order.
The two dimensional standard map reads{

xn+1 = xn − K sin(yn),

yn+1 = yn + xn+1.
(13)

The map was studied by Chirikov in 1979 [21]. x(n) and y(n)

are the momentum and coordinate, respectively. They are taken
modulo 2π . The map describes the dynamics of the kicked rotor.
Considering the fractional generalization of the momentum x(n),
we modify the standard map as a fractional one⎧⎨
⎩

C �ν
a x(t) = −K sin

(
y(t + ν − 1)

)
,

0 < ν � 1, t ∈Na+1−ν,

y(n) = y(n − 1) + x(n).

(14)

4. Chaos in the discrete fractional maps

From Theorem 2.5, we can obtain the following equivalent dis-
crete integral form for 0 < ν < 1

u(t) = u(a) + 1

�(ν)

t−ν∑
s=a+1−ν

(
t − σ(s)

)(ν−1)

× f
(
s + ν − 1, u(s + ν − 1)

)
, t ∈Na+1 (15)

where (t−σ(s))(ν−1)

�(ν)
is a discrete kernel function and (t − σ(s))(ν−1)

= �(t−s)
�(t−s+1−ν)

. As a result, the numerical formula can be presented
explicitly

u(n) = u(a) + 1

�(ν)

n∑
j=1

�(n − j + ν)

�(n − j + 1)
f
(

j − 1, u( j − 1)
)
. (16)

For the sine map (12), an explicit numerical formula can be
given as

x(n) = x(a) + μ

�(ν)

n∑
j=1

�(n − j + ν)

�(n − j + 1)
sin

(
x( j − 1)

)
. (17)

Let ν = 1, a = 0, x(0) = 0.3, n = 200 and the μ be fixed. In what
follows, Fig. 1 is the bifurcation diagram where the step size of the
μ is set as 0.01. Fig. 2 is the same bifurcation diagram except the
difference order ν = 0.8. We can observe that the chaotic zones
are clearly dependent on the changing difference order ν .

For the fractional standard map (14), we can have the numeri-
cal formula
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