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We study the implications of quantum tunneling on information entropy measures (Shannon and Fisher),
disequilibrium and LMC complexity in a Double Square Well Potential (DSWP), using the ammonia
molecule as a test bed. We also apply a similar analysis to the Infinite Square Well Potential (ISWP)
in order to compare the corresponding results with a system where tunneling is absent. In particular, we
show that contrary to the Heisenberg uncertainty product, information-theoretic tools provide a more
sensitive analysis and manage to differentiate DSWP from ISWP case, formulating an empirical criterion
whether the tunneling effect is present or not.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Classically if a particle is located in one of the wells of a DSWP
and does not have sufficient energy to surmount the barrier in the
potential, it will be forever confined to that well. Quantum me-
chanics shows that due to the wave-like nature of the particle,
after a certain length of time, there is a non-zero probability that
it will be located in the other well. It is therefore quantum me-
chanically possible for a particle to pass through a barrier that it
cannot classically overcome. This phenomenon is known as quan-
tum tunneling effect.

The quantum tunneling results in the splitting of the low-lying
energy levels which occur in pairs with slightly different energy
values. The transition frequency between the energy levels of each
pair is associated with the emission or absorption of electromag-
netic radiation. Particularly in the ammonia molecule this transi-
tion frequency for the ground-state has been measured at about
24 GHz [1–3]. This phenomenon, namely the inversion spectrum of
the ammonia molecule, has been observed through infrared spec-
troscopy and plays a fundamental role in the principle of operation
of the ammonia MASER [4]. Although inversion effect occurs in
other molecules as well (PH3, AsH3, NH2CN) [3,5], NH3 provides
a tractable vibrational system for experimental observation and ex-
ploitation, since inversion frequency falls in the microwave region.

Until recently, oscillation of probability density in position
space ρ(x, t) between the wells has been the usual way to ap-
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proach the quantum tunneling phenomenon and consequently the
inversion spectrum. Heisenberg uncertainty product reflects this
phenomenon, but information entropy offers a more sensitive ap-
proach to study a particle moving in a non-classical way through
the barrier.

Information-theoretic tools, initially applied to communication
systems, have been employed extensively to investigate various
classical and quantum systems e.g. in physics [6], chemistry [7,8],
biology [9] and many other scientific branches as well. Specifically,
the well-known information measures defined by Shannon [10]
and Fisher [11], have been applied with considerable success in
quantum systems e.g. atoms [12,13]. Shannon information entropy
has been correlated fairly well with experimental data for atomic
ionization potentials and dipole polarizabilities [14]. A comprehen-
sive account of applications to molecules can be found in [15]
and [16]. Another example is an information-theoretic treatment
of a molecule (π -system) described in [8].

To begin with, one needs a probabilistic treatment of a system,
which in fact is especially suitable and relevant for quantum sys-
tems, and then use the corresponding probability densities, ρ(r) in
position space and n(k) in momentum space as input to the def-
initions of Shannon information entropy and Fisher information.
Thus, one proceeds to the calculation of the information content
of the system and investigate its related properties. An additional
merit of the probabilistic treatment is that one can calculate quan-
titatively, in a systematic manner, a measure of complexity of the
quantum system, the so-called LMC statistical complexity [17]. The
LMC complexity of the H+

2 ion was studied using a simple wave-
function of Coulson type, leading to a promising relation of com-
plexity with chemical bonding [18]. Atomic complexity has been
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calculated for the first time in the literature in [19], where an-
other definition of complexity was employed, namely the SDL mea-
sure [20]. Last but not least, calculations of molecular information
entropies were carried out in [21,22].

In the present paper we apply the above methods in order
to study the ammonia molecule as a test bed, and in particu-
lar to assess the effect of tunneling on the Shannon information
entropy, the Fisher information and the LMC complexity, together
with Heisenberg uncertainty product. We employ a simple model
for the ammonia molecule, i.e. the Double Square Well Poten-
tial (DSWP), which captures its essential properties required for
a probabilistic treatment via the Schrödinger Equation.

This paper is organized as follows. In Section 2 we define the
relevant information measures and present the intrinsic relation
among them. In Sections 3 and 4 we derive the time-dependent
wavefunction for the ammonia molecule (DSWP) and for the In-
finite Square Well Potential respectively, in order to compare the
corresponding results of the DSWP with a system, where quantum
tunneling is absent. In Section 5 we discuss our results, while the
conclusions of the analysis are drawn in Section 6. Finally we illus-
trate the obtained figures in a separate section at the end of the
paper.

2. Information measures

The Shannon information entropy [10,23] for a discrete proba-
bility distribution pi with N accessible states, is defined as

S = −
N∑

i=1

pi log pi, (1)

while for a continuous probability density f (x) is usually called
“differential entropy” [23] and is defined as

S = −
∫

f (x) log f (x)dx. (2)

In quantum mechanics, for a continuous distribution represent-
ing the probability density in position space ρ(r), takes the form

Sr = −
∫

ρ(r) lnρ(r)dr, (3)

and the corresponding momentum space entropy Sk is given by

Sk = −
∫

n(k) ln n(k)dk, (4)

where n(k) denotes the momentum probability density [24]. The
densities ρ(r) and n(k) are respectively normalized to one. The
information entropy sum in conjugate spaces ST = Sr + Sk , con-
tains the net information of the system and is typically measured
in nats. Individual entropies Sr and Sk depend on the units used
to measure r and k respectively, but their sum ST does not, i.e. it
is invariant to uniform scaling of coordinates.

The net Shannon information entropy, in D-dimensions, obeys
the following lower bound, also known as the entropic uncertainty
relation (EUR)

ST = Sr + Sk � D(1 + lnπ), (5)

which represents a stronger version of the Heisenberg uncertainty
principle of quantum mechanics, in the sense that the EUR leads
to Heisenberg relation, while the inverse is not true [6].

Shannon’s information entropy (“uncertainty”) provides a global
measure of smoothness [25] and reflects the indeterminacy
(“spread”) of a distribution, since a highly localized ρ(r) is as-
sociated with a diffuse n(k), leading to low Sr and high Sk and
vice-versa. In other words, Shannon information entropy measures

the average amount of the information received, when this uncer-
tainty is removed by an appropriate “localization” experiment [26].

The Fisher information measure Iθ [11,25,27], also called the
“intrinsic accuracy”, corresponding to a family of probability den-
sities f (x; θ) and depending on a parameter θ is given by

Iθ =
∫

1

f (x; θ)

(
∂ f (x; θ)

∂θ

)2

dx, (6)

while for a discrete distribution [25,28] is defined as

I =
N∑

i=1

(pi+1 − pi)
2

pi
. (7)

In quantum mechanics, Fisher information in position space
takes the form

Ir =
∫ |∇ρ(r)|2

ρ(r)
dr, (8)

and the corresponding momentum space measure is given by

Ik =
∫ |∇n(k)|2

n(k)
dk. (9)

The individual Fisher measures are bounded through the
Cramer–Rao inequality according to Ir � 1

Vr
and Ik � 1

Vk
, where Vr

and Vk denote the corresponding spatial and momentum variances
respectively [29,30].

In contrast to Shannon’s information entropy which provides
a global way of characterizing “uncertainty”, Fisher’s information
provides a local measure of smoothness and reflects the “narrow-
ness” of the probability distribution [25,26]. Furthermore, Fisher’s
information is strongly sensitive to the local oscillatory character
of probability density, due to the fact that it depends on its gradi-
ent [27].

In position space, the Fisher information measures the “sharp-
ness” of probability density, i.e. a strongly localized probability
density gives rise to a larger value of Fisher information and vice-
versa. In this sense, Fisher information is complementary to Shan-
non information entropy and their reciprocal relation is, in fact,
utilized in this work.

If either the momentum space wavefunction φ(k) or the posi-
tion space wavefunction ψ(x) is real, it has been shown [27] that
the net Fisher information (IT = Ir Ik), in D-dimensions, obeys the
following lower bound

IT = Ir Ik � 4D2. (10)

The lower bounds of both Shannon sum (Sr + Sk) and Fisher
product (Ir Ik) get saturated for the Gaussian distributions [25].

Fisher’s information is also intimately related to the Shannon
information entropy via de Bruijn identity [23,30]

∂

∂t
S(x + √

tz)

∣∣∣∣
t=0

= 1

2
I(x), (11)

where x is a random variable with a finite variance with a den-
sity f (x), and z an independent normally distributed random vari-
able with zero mean and unit variance.

In a statistical analysis we are usually interested in knowing
how far the system deviates from equilibrium. For a discrete dis-
tribution with N accessible states, the quantity

D =
N∑

i=1

(
pi − 1

N

)2

, (12)

is called disequilibrium, and represents the distance from equilib-
rium [17]. For the continuous case disequilibrium is defined as
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