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We investigate stabilizer codes with carrier qudits of equal dimension D , an arbitrary integer greater
than 1. We prove that there is a direct relation between the dimension of a qudit stabilizer code and
the size of its corresponding stabilizer, and this implies that the code and its stabilizer are dual to each
other. We also show that any qudit stabilizer can be put in a canonical, or standard, form using a series of
Clifford gates, and we provide an explicit efficient algorithm for doing this. Our work generalizes known
results that were valid only for prime dimensional systems and may be useful in constructing efficient
encoding/decoding quantum circuits for qudit stabilizer codes and better qudit quantum error correcting
codes.
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1. Introduction

Quantum error correction is an important part of various
schemes for quantum computation and quantum communication,
and hence quantum error correcting codes, first introduced about
a decade ago [1–3] have received a great deal of attention. For a
detailed discussion see Chapter 10 of [4]. Most of the early work
dealt with codes for qubits, with a Hilbert space of dimension
D = 2, but qudit codes with D > 2 have also been studied [5–15].
They are of intrinsic interest and could turn out to be of some
practical value.

The stabilizer formalism introduced by Gottesman in [16] for
D = 2 (qubits) provides a compact and powerful way of gener-
ating quantum error correcting codes and extends the notion of
linear classical error correcting codes [17] to the quantum domain.
The stabilizer formalism has been generalized to cases where D
is prime or a prime power, see e.g. [6,18,12,19]. For composite D
things are more complicated and there is no immediate and natu-
ral way of generalizing the notions. Our approach is to use gener-
alized Pauli operators and stabilizers defined in the same way as in
the prime case, see e.g. [13,15]. This has the virtue that many (al-
though not all) results that are valid in the prime dimensional case
can be extended without too much difficulty to the more general
composite case.

An important problem in the theory of stabilizer codes is what
is their structure. Is there any “canonical” way of representing
an arbitrary stabilizer code? If yes, can one use this fact for im-
plementing various quantum error-correcting tasks? For qubits it
turns out that there is such a canonical form, see e.g. Chap-
ter 10.5.7 of [4] or [20], and this allows for a better understanding
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of the error-correcting capabilities of the stabilizer code and also
provides an efficient way of constructing encoding/decoding cir-
cuits for such stabilizer codes. Both of these canonical forms are
immediately generalizable to prime D . For composite D we are
not aware of any such canonical form (except for the case of stabi-
lizer codes over prime-power finite fields [12]), and the proof that
such a form exists is one of the main results of the current arti-
cle.

The reminder of the paper is organized as follows. Section 2
contains definitions of the generalized Pauli group and some quan-
tum gates used later in the paper. It also defines rigorously qudit
stabilizers and their corresponding stabilized subspaces (or codes),
together with an alternative algebraic notation that we employ
later. Section 3 contains our main results: a “size” theorem that
relates the size of the stabilizer group to the dimension of its stabi-
lized subspace, followed by a “structure” theorem that shows that
any qudit stabilizer can be brought to a canonical form through a
series of elementary quantum gates. Finally, Section 4 contains a
summary, conclusions, and some open questions.

2. Preliminary remarks and definitions

2.1. The generalized Pauli group on n qudits

We generalize Pauli operators to higher dimensional systems of
arbitrary dimension D in the following way. The X and Z operators
acting on a single qudit are defined as

Z =
D−1∑
j=0

ω j| j〉〈 j|, X =
D−1∑
j=0

| j〉〈 j + 1|, (1)

and satisfy

X D = Z D = I, X Z = ωZ X, ω = e2π i/D , (2)

0375-9601/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physleta.2013.12.009

http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:vgheorgh@gmail.com
http://dx.doi.org/10.1016/j.physleta.2013.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2013.12.009&domain=pdf


506 V. Gheorghiu / Physics Letters A 378 (2014) 505–509

where the addition of integers is modulo D , as will be assumed from
now on. For a collection of n qudits we use subscripts to iden-
tify the corresponding Pauli operators: thus Zi and Xi operate on
the space of qudit i. The Hilbert space of a single qudit is denoted
by H, and the Hilbert space of n qudits by Hn , respectively. Oper-
ators of the form

ωλ Xx Z z := ωλ Xx1
1 Z z1

1 ⊗ Xx2
2 Z z2

2 ⊗ · · · ⊗ Xxn
n Z zn

n (3)

will be referred to as Pauli products, where λ is an integer in ZD
and x and z are n-tuples in Z

n
D , the additive group of n-tuple in-

tegers mod D . For a fixed n the collection of all possible Pauli
products (3) form a group under operator multiplication, the Pauli
group Pn . If p is a Pauli product, then pD = I is the identity oper-
ator on Hn , and hence the order of any element of Pn is either D
or else an integer that divides D . While Pn is not Abelian, it has
the property that two elements commute up to a phase:

p1 p2 = ωλ12 p2 p1, (4)

with λ12 an integer in ZD that depends on p1 and p2.

2.2. Generalization of qubit quantum gates to higher dimensions

In this subsection we define some one and two qudit gates
generalizing various qubit gates. The qudit generalization of the
Hadamard gate is the Fourier gate

F := 1√
D

D−1∑
j=0

ω jk| j〉〈k|. (5)

For an invertible integer q ∈ ZD (i.e. integer for which there exists
q̄ ∈ ZD such that qq̄ ≡ 1 mod D), we define a multiplicative gate

Sq :=
D−1∑
j=0

| j〉〈 jq|, (6)

where qj means multiplication mod D . The requirement that q be
invertible ensures that Sq is unitary; for a qubit Sq is just the iden-
tity.

For two distinct qudits a and b we define the CNOT gate as

CNOTab :=
D−1∑
j=0

| j〉〈 j|a ⊗ X j
b =

D−1∑
j,k=0

| j〉〈 j|a ⊗ |k〉〈k + j|b, (7)

the obvious generalization of the qubit Controlled-NOT, where a la-
bels the control qudit and b labels the target qudit. Next the SWAP
gate is defined as

SWAPab :=
D−1∑
j,k=0

|k〉〈 j|a ⊗ | j〉〈k|b. (8)

It is easy to check that SWAP gate is hermitian and does indeed
swap qudits a and b. Unlike the qubit case, the qudit SWAP gate is
not a product of three CNOT gates, but can be expressed in terms
of CNOT gates and Fourier gates as

SWAPab = CNOTab(CNOTba)
†CNOTab

(
F2

a ⊗ Ib
)
, (9)

with

(CNOTba)
† = (CNOTba)

D−1 = (
Ia ⊗ F2

b

)
CNOTba

(
Ia ⊗ F2

b

)
. (10)

Finally we define the generalized Controlled-phase or CP gate as

CPab =
D−1∑
j=0

| j〉〈 j|a ⊗ Z j
b =

D−1∑
j,k=0

ω jk| j〉〈 j|a ⊗ |k〉〈k|b. (11)

Table 1
The conjugation of Pauli operators by one-qudit gates
F and Sq (q̄ is the multiplicative inverse of q mod D).

Pauli operator Sq F

Z Zq X

X Xq̄ Z D−1

Table 2
The conjugation of Pauli products on qudits a and b by two-qudit gates CNOT, SWAP
and CP. For the CNOT gate, the first qudit a is the control and the second qudit b
the target.

Pauli product CNOTab SWAPab CPab

Ia ⊗ Zb Za ⊗ Zb Za ⊗ Ib Ia ⊗ Zb

Za ⊗ Ib Za ⊗ Ib Ia ⊗ Zb Za ⊗ Ib

Ia ⊗ Xb Ia ⊗ Xb Xa ⊗ Ib Z D−1
a ⊗ Xb

Xa ⊗ Ib Xa ⊗ X D−1
b Ia ⊗ Xb Xa ⊗ Z D−1

b

The CP and CNOT gates are related by a local Fourier gate, similar
to the qubit case

CNOTab = (Ia ⊗ Fb)CPab(Ia ⊗ Fb)
†, (12)

since F maps Z into X under conjugation (see Table 1).
The gates F, Sq , SWAP, CNOT and CP are unitary operators that

map Pauli operators to Pauli operators under conjugation, as can
be seen from Tables 1 and 2. They are elements of the so called
Clifford group on n qudits [21,22], the group of n-qudit unitary op-
erators that leaves Pn invariant under conjugation, i.e. if O is a
Clifford operator, then ∀p ∈ Pn , Op O † ∈ Pn . From Tables 1 and 2
one can easily deduce the result of conjugation by F, Sq , SWAP,
CNOT and CP on any Pauli product.

2.3. Qudit stabilizer codes

Relative to this group we define a stabilizer code C to be a
K � 1-dimensional subspace of the Hilbert space satisfying three
conditions:

C1 There is a subgroup S of Pn such that for every s in S and
every |ψ〉 in C

s|ψ〉 = |ψ〉. (13)

C2 The subgroup S is maximal in the sense that every s in Pn for
which (13) is satisfied for all |ψ〉 ∈ C belongs to S .

C3 The coding space C is maximal in the sense that any ket |ψ〉
that satisfies (13) for every s ∈ S lies in C .

If these conditions are fulfilled we call S the stabilizer of the
code C . That it is Abelian follows from the commutation re-
lation (4), since for K > 0 there is some nonzero |ψ〉 satisfy-
ing (13).

Note that one can always find a subgroup S of Pn satisfying
C1 and C2 for any subspace C of the Hilbert space, but it might
consist of nothing but the identity. Thus it is condition C3 that
distinguishes stabilizer codes from nonadditive codes. A stabilizer
code is uniquely determined by S as well as by C , since S deter-
mines C through C3, so in a sense the code and its stabilizer are
dual to each other.

2.4. Stabilizer generators and equivalent algebraic descriptions of qudit
stabilizer codes

Any stabilizer group can be compactly described using a set of
group generators. A generator corresponds to a specific Pauli prod-
uct and can be completely specified, see (3), by a phase λ and two
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