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A representation of the solid angle and the Burgers formula as line integral is derived in the framework
of the theory of gradient elasticity of Helmholtz type. The gradient version of the Eshelby–deWit
representation of the Burgers formula of a closed dislocation loop is given. Such a form is suitable for
the numerical implementation in 3D dislocation dynamics (DD).
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1. Introduction

The Burgers formula and the solid angle play an important role
in the dislocation theory (e.g., [1–5]) and in the simulation of dis-
location dynamics (e.g., [6–8]). The original formulas are given in
the form of surface integrals. The transformation of the surface
integrals into line integrals was proposed by deWit [9] and Es-
helby [10] adopting Dirac’s theory of magnetic monopoles [11–13].
In particular, it turned out that the representation as line integral
is more appropriate for numerical implementation of these equa-
tions into the dislocation dynamics. The classical expressions for
the Burgers formula and for the solid angle are singular at the line
of the dislocation loop. Moreover, the Burgers formula is discontin-
uous on the slip surface.

Non-singular expressions for the Burgers formula and the solid
angle have been recently found by Lazar [14,15] using the the-
ory of gradient elasticity of Helmholtz type. The theory of gradient
elasticity of Helmholtz type is a special version of Mindlin’s gradi-
ent elasticity theory [16] (see also [17,15]) with only one charac-
teristic length parameter. Lazar and Maugin [18] have shown that,
for straight dislocations, the gradient parameter leads to a smooth-
ing of the displacement profile, in contrast to the jump occurring
in the classical solution. Lazar [14,15] has given the generalized
solid angle and the corresponding part of the Burgers formula in
the form of surface integrals. In this letter, we recast the Burgers
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formula and the solid angle of gradient elasticity in compact form
as line integrals over the closed dislocation loop. The results have
a direct application to the numerical implementation and the com-
puter simulation of non-singular dislocations within the so-called
(discrete) dislocation dynamics. In Section 2, we discuss and point
out the basics of the line integral form of the solid angle and of the
associated vector potential in the framework of classical elasticity
and their relation to Dirac’s solution of a magnetic monopole. In
Section 3, we derive the corresponding expressions in the frame-
work of gradient elasticity.

2. Classical elasticity

In the theory of classical elasticity, the solid angle is given as a
surface integral (see, e.g., [1])

Ω0(r) =
∫
S

v0
i (R)dS ′

i =
∫
V

v0
i (R)δi

(
S ′)dV ′

= v0
i (r) ∗ δi(S), (1)

where the vector field v0
i is

v0
i = −1

2
�∂i R = −∂i

1

R
= Ri

R3
, (2)

while the Dirac δ-function on a surface S [19,20] is defined as

δi(S) ≡
∫
S

δ(R)dS ′
i . (3)
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The relative radius vector R = r − r′ connects a source point r′
on the loop to a field point r and R = |R| denotes the norm of R .
Here S denotes an arbitrary smooth surface enclosed by the loop L,
dS ′

i is an oriented surface element, Ω0(r) is the solid angle under
which the loop L is seen from the point r, and ∗ denotes the spa-
tial convolution. The vector field (2) is analogous to the magnetic
field of a magnetic monopole fixed at the origin (e.g., [12,13]). The
divergence of the vector field (2) yields

∂i v0
i = −1

2
��R = 4πδ(R), (4)

since

��R = −8πδ(R). (5)

The solid angle Ω0 is a multi-valued quantity with the residue 4π .
Thus, the solid angle Ω0 changes by 4π when the field point
crosses the surface S . In particular, this happens for a Burgers cir-
cuit that encircles L. In other words, S represents the surface of
discontinuity. Notice that, in classical elasticity, the plastic distor-
tion caused by a dislocation loop is concentrated at the surface S .
From a physical viewpoint, S represents the area swept by the loop
L during its motion and may be called the slip surface. Thus, the
surface S is what determines the history of the plastic distortion
of a dislocation loop (see, e.g., [1,19]).

We may use the Stokes theorem to arrive at a line integral over
L for the solid angle. To do so, it is necessary to express v0

i as
the curl of a “vector potential” A0

k . However, Eq. (4) shows that
the divergence of the vector field v0

i is not identically zero, and
therefore it becomes impossible to write v0

i everywhere as the curl
of a vector potential. Nevertheless, introducing a so-called fictitious
vector field v( f )0

i , which is sometimes called “string of singularity”,
(see, e.g., [12,13]) having the property

∂i v( f )0
i = −∂i v0

i , (6)

a vector potential A0
k may be introduced for the divergenceless

sum v0
i + v( f )0

i :

v0
i + v( f )0

i = εi jk∂ j A0
k . (7)

Subtraction of the fictitious vector field in Eq. (7) leads to the phys-
ical vector field v0

i given by

v0
i = εi jk∂ j A0

k − v( f )0
i . (8)

Taking the curl of Eq. (7) and imposing the “Coulomb gauge”
∂k A0

k = 0, we find an inhomogeneous Laplace equation for the vec-
tor potential

�A0
k = −εklm∂l v

( f )0
m , (9)

where the fictitious vector field v( f )0
m is the source term of the vec-

tor potential. Using the 3D Green function of the Laplace equation,
−1/(4π R), the solution of Eq. (9) reads

A0
k(r) = 1

4π
εklm

∫
V

∂l
1

R
v( f )0

m
(
r′) dV ′

= − 1

4π
εklm

∫
V

v0
l (R)v( f )0

m
(
r′) dV ′. (10)

The fictitious singular vector field v( f )0
i can be taken as [13,20]

v( f )0
i (r) =

∫
C

v0
k,k(r − s)dsi

= 4π

∫
C

δ(r − s)dsi ≡ 4πδi(C), (11)

where C is a curve, called the “Dirac string”, starting at −∞ and
ending at the origin and δi(C) is the δ-function along the Dirac
string. The divergence of this field is concentrated at the endpoint
of the string:

∂i v( f )0
i (r) = −4πδ(r) = −∂i v0

i (r). (12)

Then the vector potential of the monopole (10) is given as a line
integral along the path C (see, e.g., [12]):

A0
k(r) = εklm

∫
C

v0
m(r − s)dsl = −εklm

∫
C

∂m
1

|r − s| dsl. (13)

The fictitious vector field v( f )0
m is a singular field which vanishes

everywhere except along the Dirac string C .
If we choose for the path C a straight line in the direction of a

constant unit vector ni , the fictitious vector field reads

v( f )0
i (r) = 4πni

0∫
−∞

δ(r − ns)ds, (14)

and the vector potential of the “magnetic monopole” reduces to

A0
k(r) = εklm

nlrm

r(r + rini)
. (15)

Eq. (15) has the original form of the vector potential of Dirac’s
magnetic monopole (see, e.g., [11,12]) which was adopted by
deWit [9] and Eshelby [10] for the representation of the solid an-
gle as a line integral.

Substituting Eqs. (8) and (11) into (1) and using the Stokes the-
orem, we find

Ω0(r) = v0
i (r) ∗ δi(S) = εi jk∂ j A0

k(r) ∗ δi(S) − v( f )0
i (r) ∗ δi(S)

= A0
k(r) ∗ εkji∂ jδi(S) − 4πδi(C) ∗ δi(S)

= A0
k(r) ∗ δk(L) − 4πδi(C) ∗ δi(S), (16)

where

A0
k(r) ∗ δk(L) =

∫
V

A0
k(R)δk

(
L′)dV ′ =

∮
L

A0
k(R)dL′

k, (17)

the δ-function on a closed line L [19,20]

δi(L) ≡
∫
L

δ(R)dL′
i, (18)

and εkji∂ jδi(S) = δk(L). Here dL′
i denotes the line element at r′ .

For the contribution of the fictitious vector field we used the for-
mula [19,21]

δi(L) ∗ δi(S) =
∫
S

∫
L

δ
(
r − r′)dL′

i dSi

=
⎧⎨
⎩

1, if L crosses S positively,

0, if L does not cross S,

−1, if L crosses S negatively.

(19)

Finally, the solid angle reduces to a line integral of the monopole
vector potential (13) or (15) and a constant

Ω0(r) =
∮
L

A0
k(R)dL′

k

− 4π

⎧⎨
⎩

1, if C crosses S positively,

0, if C does not cross S,

−1, if C crosses S negatively.

(20)
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