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We study local conservation laws for evolution equations in two independent variables. In particular, we
present normal forms for the equations admitting one or two low-order conservation laws. Examples
include Harry Dym equation, Korteweg–de Vries-type equations, and Schwarzian KdV equation. It is
also shown that for linear evolution equations all their conservation laws are (modulo trivial conserved
vectors) at most quadratic in the dependent variable and its derivatives.
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1. Introduction

The role played in the sciences by linear and nonlinear evolu-
tion equations and, in particular, by conservation laws thereof, is
hard to overestimate (recall e.g. linear and nonlinear Schrödinger
equations and the Korteweg–de Vries (KdV) equation in physics,
reaction–diffusion systems in chemistry and biology, and the
Black–Scholes equation in the finance, to name just a few). For
instance, the discovery of higher conservation laws for the KdV
equations provided an important milestone on the way that has
eventually lead to the discovery of the inverse scattering trans-
form and the modern theory of integrable systems, see e.g. [21,
22]. However, the theory of conservation laws for evolution equa-
tions is still far from being complete even for the simplest case of
two independent variables, and in the present Letter we address
some issues of the theory in question for this very case.

We shall deal with an evolution equation in two independent
variables,

ut = F (t, x, u0, u1, . . . , un), n � 2, Fun �= 0, (1)

where u j ≡ ∂ ju/∂x j , u0 ≡ u, and Fu j = ∂ F/∂u j . We shall also
employ, depending on convenience or necessity, the following no-
tation for low-order derivatives: ux = u1, uxx = u2, and uxxx = u3.
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There is a considerable body of results on conservation laws
of evolution equations of the form (1). For instance, in the semi-
nal paper [8] the authors studied, inter alia, conservation laws of
Eq. (1) with ∂ F/∂t = 0 for n = 2. They proved that the possible
dimensions of spaces of inequivalent conservation laws for such
equations are 0, 1, 2 and ∞, and described the equations possess-
ing spaces of conservation laws of these dimensions (the precise
definitions of equivalence and order of conservation laws are given
in the next section). These results were further generalized in [28]
for the case when F explicitly depends on t .

Important results on conservation laws of (1), typically under
the assumptions of polynomiality and t, x-independence of F and
of the conservation laws themselves, were obtained in [1–4,10–12,
15]. However, for general equation (1) there is no simple picture
analogous to that of the second-order case discussed above. For
instance, unlike the second-order case, there exist odd-order evo-
lution equations that possess infinitely many inequivalent conser-
vation laws of increasing orders without being linearizable. Rather,
such equations are integrable via the inverse scattering transform,
the famous KdV equation providing a prime example of such be-
havior, see e.g. [13,15,21] and references therein; for the fifth-order
equations see [9].

Note that many results on symmetries and conservation laws
were obtained using the formal symmetry approach and modifica-
tions thereof, see e.g. the recent survey [20] and references therein,
in particular [19,34]. For instance, it was shown that an equation
of the form (1) of even order (n = 2m) has no conservation laws
(modulo trivial ones) of order greater than m, see [1,10,13,14] for
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details. There also exists a closely related approach to the study of
symmetries and conservation laws of evolution equations, the so-
called symbolic method, see [18,29–31] and references therein for
details.

However, many important questions concerning the conserva-
tion laws of evolution equations were not answered so far. For
example, we are not aware of any significant advances in the study
of normal forms of evolution equations admitting low-order con-
servation laws considered in [8,11,28]. In the present Letter we
provide such normal forms with respect to contact or point trans-
formations for equations admitting one or two low-order conser-
vation laws, respectively, see Theorem 1 and Theorem 2 below.
Let us stress that in what follows we restrict ourselves to con-
sidering only local conservation laws whose densities and fluxes
depend only on the independent and dependent variables and a
finite number of the derivatives of the latter.

The complete description of local conservation laws for local lin-
ear evolution equations with t, x-dependent coefficients was also
missing so far. Below we show that linear even-order equations
of the form (1) can only possess conservation laws linear in u j
for all j = 0,1,2, . . . while the odd-order equations can further
admit the conservation laws (at most) quadratic in u j , see The-
orem 3 and Theorem 4, Corollary 6 and Theorem 5 below. This
naturally generalizes some earlier results from [3,12]; cf. also [5].
The generation of linear and quadratic conservation laws for lin-
ear differential equations is also discussed in some depth in [24,
Section 5.3].

Below we denote by CL(E ) the space of local conservation laws
of E (cf. Section 3), where E denotes a fixed equation from the
class (1). In what follows Dt and Dx stand for the total derivatives
(see e.g. [24] for details) with respect to the variables t and x,

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · ,
Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + · · · .
As usual, the subscripts like t , x, u, ux , etc. stand for the partial
derivatives in the respective variables.

2. Admissible transformations of evolution equations

The contact transformations mapping an equation from class (1)
into another equation from the same class are well known [17] to
have the form

t̃ = T (t), x̃ = X(t, x, u, ux), ũ = U (t, x, u, ux). (2)

The functions T , X and U must satisfy the nondegeneracy assump-
tions, namely, Tt �= 0 and

rank

(
Xx Xu Xux

Ux Uu Uux

)
= 2, (3)

and the contact condition

(Ux + Uuux)Xux = (Xx + Xuux)Uux . (4)

The transformation (2) is uniquely extended to the derivative ux

and to the higher derivatives by the formulas ũx̃ = V (t, x, u, ux)

and ũk ≡ ∂kũ/∂ x̃k = ((1/Dx X)Dx)
k V , where

V = Ux + Uuux

Xx + Xuux
or V = Uux

Xux

if Xx + Xuux �= 0 or Xux �= 0, respectively; the possibility of simul-
taneous vanishing of these two quantities is ruled out by (3).

The transformed equation (1) reads ũt̃ = F̃ where

F̃ = Uu − Xu V

Tt
F + Ut − Xt V

Tt
, (5)

and (Xu, Uu) �= (0,0) because of (3) and (4).
Any transformation of the form (2) leaves the class (1) invari-

ant, and therefore its extension to an arbitrary element F belongs
to the contact equivalence group G∼

c of class (1), so there are no
other elements in G∼

c . In other words, the equivalence group G∼
c

generates the whole set of admissible contact transformations in
the class (1), i.e., this class is normalized with respect to contact
transformations, see [26] for details.

The above results can be summarized as follows.

Proposition 1. The class of Eqs. (1) is contact-normalized. The contact
equivalence group G∼

c of the class (1) is formed by the transformations
(2), satisfying conditions (3) and (4) and prolonged to the arbitrary ele-
ment F by (5).

Furthermore, the class (1) is also point-normalized. The point
equivalence group G∼

p of this class consists of the transformations
of the form

t̃ = T (t), x̃ = X(t, x, u), ũ = U (t, x, u),

F̃ = �

Tt Dx X
F + Ut Dx X − Xt DxU

Tt Dx X
, (6)

where T , X and U are arbitrary smooth functions that satisfy the
nondegeneracy conditions Tt �= 0 and � = XxUu − Xu Ux �= 0.

Notice that there exist subclasses of the class (1) whose sets of
admissible contact transformations are exhausted by point transfor-
mations.

In the present Letter we do not consider more general trans-
formations, e.g., differential substitutions such as the Cole–Hopf
transformation.

3. Some basic results on conservation laws

It is well known that for any evolution equation (1) we can as-
sume without loss of generality that the associated quantities like
symmetries, cosymmetries, densities, etc., can be taken to be in-
dependent of the t-derivatives or mixed derivatives of u. We shall
stick to this assumption throughout the rest of the Letter.

Following [24] we shall refer to a (smooth) function of t , x and
a finite number of u j as to a differential function. Given a differen-
tial function f , its order (denoted by ord f ) is the greatest integer
k such that fuk �= 0 but fu j = 0 for all j > k. For f = f (t, x) we
assume that ord f = 0.

Thus, for a (fixed) evolution equation (1), which we denote by
E as before, we lose no generality [24] in considering only the
conserved vectors of the form (ρ,σ ), where ρ and σ are differential
functions which satisfy the condition

Dtρ + Dxσ = 0 mod Ě , (7)

and Ě means the equation E together with all its differential con-
sequences. Here ρ is the density and σ is the flux for the conserved
vector (ρ,σ ). Let

δ

δu
=

∞∑
i=0

(−Dx)
i∂ui ,

f∗ =
∞∑

i=0

fui Di
x, f †∗ =

∞∑
i=0

(−Dx)
i ◦ fui

denote the operator of variational derivative, the Fréchet deriva-
tive of a differential function f , and its formal adjoint, respectively.
With this notation in mind we readily infer that the condition (7)
can be rewritten as ρt + ρ∗ F + Dxσ = 0. As ρ∗ F = F δρ/δu + Dxζ
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