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We present an exact analytical treatment of the semi-relativistic spinless Salpeter equation with a one-
dimensional Coulomb interaction in the context of quantum mechanics with modified Heisenberg algebra
implying the existence of a minimal length. The problem is tackled in the momentum space representa-
tion. The bound-state energy equation and the corresponding wave functions are exactly obtained.
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1. Introduction

The spinless Salpeter equation (SSE) may be viewed as a natural
approximation to the Bethe–Salpeter formalism which constitutes
the basic framework for the description of bound states within rel-
ativistic quantum field theory. More precisely, the spinless Salpeter
equation can be derived from the Bethe–Salpeter equation [1] upon
performing the following approximations:

* The elimination of any dependence on time-like variable by
assuming a static or instantaneous interactions. This results in
the so-called Salpeter equation [2].

* The neglect of any references to the spin degrees of freedom
of particles and the restriction to positive energy solutions.

In addition, this equation represents one of the simplest relativistic
generalizations of the Schrödinger formalism towards the reconcil-
iation with all the requirements of special relativity through the
incorporation of the exact relativistic relation between energy and
momentum. This equation is generally used when kinetic relativis-
tic effects cannot be neglected. It is suitable for the description of
scalar bosons as well as the spin averaged spectra of bound states
of fermions. It appears, for example, in the description of hadrons
as bound states of quarks in the context of potential models [3–7].

In the one-particle case, the spinless Salpeter equation takes the
form of an eigenvalue problem (h̄ = c = 1)
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H|ψk〉 = Ek|ψk〉, k = 1,2,3, . . .

with Ek the energy eigenvalues corresponding to Hilbert-space
eigenvectors |ψk〉, and H the Hamiltonian of the system being of
the form

H =
√

p2 + m2 + V (r)

where
√

p2 + m2 is the relativistic kinetic energy of the particle
of mass m and momentum p and V (r) is an arbitrary position-
dependent static interaction potential.

Unfortunately, the presence of the square root renders the spin-
less Salpeter equation difficult to handle, so that general rigorous
results concerning this equation are few. Most of these results have
been obtained for the Coulomb potential [8–12]. (For a more de-
tailed history of the spinless Salpeter Coulomb problem we refer
the reader to Ref. [13].) Other particular interactions have been
also considered in some studies where upper and lower limits on
energy levels have been obtained [14–17]. Some more general re-
sults also exist.

All the mentioned studies have been performed within the
framework of usual quantum mechanics where position and mo-
mentum operators acting on the Hilbert space of states verify
the standard Heisenberg algebra. They do not take into account
the existence of a finite lower bound to the possible resolution
of distance, i.e. a minimal observable length. This concept has
been recently suggested by several investigations in string the-
ory and quantum gravity [18–22]. From a quantum theoretical
point of view, the minimal length may be described as a non-zero
minimal uncertainty in position measurements. In [23–26], Kempf
et al. showed that this idea may be implemented by introducing
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a specific corrections to the usual canonical commutation relations
between position and momentum operators. The resulting uncer-
tainty principle exhibits an intriguing UV/UR mixing. This kind of
relation has first appeared in Ads/CFT correspondence [27] and
in non-commutative quantum field theory [28]. Physically speak-
ing, the UV/UR mixing means that short distance physics may be
probed by long distance physics. This lends an additional justi-
fication to the analysis of quantum mechanical problems in the
presence of a minimal length. On the other hand, it was also
suggested that the minimal length can be related to large extra
dimensions [29], to the running coupling constant [30], and to the
physics of black hole production [31].

Remark that it has also been argued [25,32] that the formal-
ism of minimal length can provide an effective theory to describe
non-pointlike particles such as quasiparticles and various collec-
tive excitations in solids, or composite particles, such as nucleons,
nuclei and molecules [25]. In this case the minimal length may
be viewed as an intrinsic scale characterizing the structure of the
considered system and its finite size.

In the last years, a lot of attention has been addressed to the
study of the effect of minimal length in quantum mechanical prob-
lems [23,24,33–45]. One of the more investigated system in the
literature is the Coulomb potential problem [34–40]. This is nat-
ural since this system has a crucial role for our understanding of
the key points of modern physics. However, as far as we know,
no one has reported on the relativistic version of this model. In
the present work, we proceed some steps in this direction and we
study the one-dimensional spinless Salpeter Coulomb problem un-
der a minimal length assumption. In addition to its importance
as a new problem for which the relations giving the bound-states
energies can be found exactly, the considered system may have
interesting applications in theoretical physics. For example, this po-
tential appears in the investigation of mass spectra of mesons [46],
and may also be relevant for the physics of semiconductors and in-
sulators [47].

The rest of the Letter is organized as follows. In Section 2, we
introduce the main relations of quantum mechanics with modi-
fied Heisenberg algebra. In Section 3, we solve in the momentum
space representation the spinless Salpeter equation with a one-
dimensional Coulomb interaction in the presence of a minimal
length. Then we obtain the exact relations from which the corre-
sponding bound-states energies can be extracted. In Section 4 we
give our conclusion.

2. Quantum mechanics with generalized Heisenberg algebra

The modified Heisenberg algebra we shall consider in this Let-
ter is defined by the following commutation relation between the
position and momentum operators

[ X̂, P̂ ] = i
(
1 + β P̂ 2) (1)

where β is a positive parameter. This deformed commutation rela-
tion leads to the generalized uncertainty principle

(�X)(�P ) � 1

2

[
1 + β(�p)2] (2)

which implies the existence of a non-zero minimal uncertainty in
position

(�x)min = √
β. (3)

As mentioned above, the striking feature of (2) is the UV/IR mix-
ing: when �P is large (UV), �X is proportional to �P , and there-
fore is also large (IR). This phenomena seems to be necessary in
dealing with certain types of new physics [28] being considered
recently.

A fundamental consequence of the minimal length is the loss of
the notion of localization in the position space since space coordi-
nates can no longer be probed with accuracy more than (�x)min.
Hence momentum space becomes more convenient in order to
solve any eigenvalue problem.

In the momentum space, an explicit representation of the posi-
tion and momentum operators obeying Eq. (1) is given by

X̂ = i

[(
1 + βp2) ∂

∂ p
+ γ p

]
, P̂ = p (4)

where γ is an arbitrary constant. Note that γ does not affect the
observable quantities, its choice determines only the weight func-
tion in the definition of the scalar product given by

〈φ|ψ〉 =
+∞∫

−∞

dp

(1 + βp2)
1− γ

β

φ∗(p)ψ(p). (5)

In the following we will set γ = 0 in order to simplify the calcula-
tions.

3. Spinless Salpeter Coulomb problem with minimal length

In this section, we shall solve in the momentum space repre-
sentation the following eigenvalue problem

[√
P̂ 2 + m2 + V ( X̂)

]|ψ〉 = E|ψ〉 (6)

with a Coulomb type interaction

V (x) = −κ

x
, x ∈ R (κ > 0) (7)

where position and momentum operators satisfy deformed com-
mutation relation (1). Due to its singularity at the origin, the
Coulomb potential is in particular sensitive to whether there is a
fundamental minimal length.

Let us note that potential (7) has the same bound states as the
hard-core amended Coulomb potential considered in [48]. Indeed,
bound states are determined by the potential well of the right half
space which is the same for the two interactions and the boundary
condition ψ(x = 0) = 0. In our case, this condition follows from the
infinite barrier that has the potential in hand in the left half space.

Operating now on the both sides of Eq. (6) with X̂ and re-
placing the position operator by its momentum representation (4)
(with γ = 0) we get the following differential equation

(
1 + βp2) ∂

∂ p

[(
E −

√
p2 + m2

)
ψ(p)

] − iκψ(p) = 0. (8)

Defining a new function ϕ(p) by

ϕ(p) = (
E −

√
p2 + m2

)
ψ(p). (9)

Eq. (8) becomes

∂

∂ p
ϕ(p) − iκ

(E − √
p2 + m2 )(1 + βp2)

ϕ(p) = 0 (10)

the solution of which is given by

ϕ(p) = λexp iθ(p) (11)

where λ is an arbitrary constant and the function θ(p) is defined
as

θ(p) =
p∫

0

κ du

(E − √
u2 + m2 )(1 + βu2)

. (12)
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