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We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic 
map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal 
intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the 
cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped 
when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply 
them to other more complex, discussing how the topography on parameter space is affected. By use 
of the winding number as defined in periodically forced oscillators, we show that the hierarchical 
organization of the periodic domains is manifested in global and local scales.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In dynamical systems investigation, parameter space bifurca-
tions have been nowadays crucial to discover and understand new 
phenomena, in particular in studies of periodic domains organi-
zation, either discrete- or continuous-time systems. Early and pi-
oneering studies employing stability diagrams in two-parameter 
spaces [1–3] have emphasized the genesis and the aligning of pe-
riodic structures (shrimps), while more recent works explore new 
and interesting features such as the periodic windows replica-
tion [4], the torsion-adding phenomena and the asymptotic wind-
ing numbers [5], both in periodically forced oscillators, and the 
spiral-like periodicity hub in circuits [6–9] and in the Rössler sys-
tem [10].

Other studies show that, varying two parameters in continuous-
time systems, regularities between chaotic and periodic phases 
are observed (1) repeating isomorphically as in the Duffing sys-
tem [11], and (2) exhibiting hierarchical ordering as in sigmoidal 
maps [12], in mixed-mode oscillation distributions [13–15], in bi-
furcations of two coupled FitzHugh–Nagumo oscillators [16], in 
a damped-forced oscillator [17], in a ecological [18] and a can-
cer models [19], and in the driven Josephson Junction [20]. In 
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this work, we show how a simple one-dimensional discrete-time 
system, named parametrically forced logistic map, can exhibit si-
multaneously these two features — the isomorphic repetition and 
the hierarchical organization — since three parameters of the map 
are varied.

The parametrically forced logistic map is a variant of the known 
logistic map [21] when its control parameter is varied dynamically 
(discretely in time). This map is similar to a dissipative periodi-
cally driven oscillator, since its discretely varied control parame-
ter emulates a time-dependent driven force in continuous systems 
[22]. Markus and Hess [23] and Markus [24] have used the para-
metrically forced logistic map to show multifoliated structures in 
two-dimensional parameter spaces. Again in the parameter space, 
periodic structures and the basin of attraction were obtained by 
Baptista and Caldas [25] for a modulated version of the forced lo-
gistic map, while Kuznetsov and Savin [26] investigated the chaos 
border of typical structures taking binary sequences as a perturbed 
signal. Recently, Kumeno et al. [27] have used two coupled para-
metric forced logistic maps to investigate the synchronization phe-
nomena and the basin of attraction. However, the organization of 
the existing complex structures in periodic domains to the para-
metrically forced logistic map remains an open question.

We constructed phase diagrams for the parametrically forced 
logistic map in two ways: by Lyapunov exponents and winding 
numbers. Lyapunov’s version of phase diagrams yields a complex 
pattern of superstable orbits curves, unique in each periodic do-
main. The superstable curves intersect in specific points defining 
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the basic element discussed in this work, named the cell of a pe-
riodic window. The cell is completely described by the winding 
number’s version of the phase diagrams, the winding number de-
fined by the ratio of two frequencies, in analogy to periodically 
forced oscillators. The preservation of the winding numbers in iso-
morphic structures, observed along successive parameter spaces, 
shows that some cell components are repeatedly remapped in a 
recurrent way, which we illustrate in some cases. From these re-
current cells, we extract sequences of winding numbers that show 
how the periodic domains are hierarchically organized. And finally, 
we demonstrate that these sequences of winding numbers, ap-
pearing globally in the periodic domains, are manifested locally in 
unitary cells as well.

2. Forced logistic map and winding number

The forced logistic map is a variant of the traditional logistic 
map in which the control parameter varies in a time-dependent 
manner. The map is defined by

xi+1 = λi xi(1 − xi), (1)

where the parameter λi changes dynamically (with i) in any 
P -length sequence. We allow varying the parameter either two 
values, λi = a or b [23,24,26,27], generating sequences

{λi} = {ap1 bp2︸ ︷︷ ︸
P terms

ap1 bp2 . . . } , (2)

where p1 and p2 are integers and p1 + p2 = P . Eqs. (1) and (2)
emulate two characteristics of a continuous-time damped driven 
oscillator: the “(1 − x)” term emulates the damping factor, and the 
sequence {λi} the driven force oscillating either the states ‘a’ and 
‘b’ under forcing period P .

We define the winding number wγ , for a trajectory γ , as a 
ratio of two frequency (as in periodically forced oscillators) [5,
36–41]

wγ = �γ

f P
, (3)

where �γ is the visiting branch frequency and f P the “driven 
force” frequency. The �γ is the (mean) number of times that the 
points xi in Eq. (1) visit the branch of first return map (xi+1 vs. xi ) 
with negative slope by N iterations [28], or

�γ = lim
N→∞

1

N

N∑
i=0

θi, (4)

were θi = 0 if xi < 1/2 or θi = 1 if xi > 1/2. Observe that the above 
limit results in �γ = n/pγ : the “torsions” n (i.e. number of visits 
to the negative branch of the first return map) by orbital period 
pγ [29–35]. As f P = 1/P , it follows from Eq. (3) that

wγ = P�γ . (5)

Since pγ = mP , m is an integer in a periodically forced system, it 
results for the visiting branch frequency in �γ = n/pγ = n/(mP ). 
Taking this result in Eq. (5), we have

wγ = n

m
. (6)

Note that Eq. (6) agrees with definition of winding number as a 
ratio of two integers (m and n) [29–32]. Finally, Eq. (5) is a valuable 
tool to identify how a periodic structure is interchanged between 
different periodic domains.

Fig. 1. Lyapunov (scales in bits · s−1) and winding numbers phase diagrams for 
Eq. (1) for symmetric sequences {λi}: {a1b1 . . . } in (a) and (d); {a2b2 . . . } in (b) and 
(e); and {a3b3 . . . } in (c) and (f). On Lyapunov diagrams (first column) red–orange–
yellow colors indicate positive exponents (chaotic behavior); white–grey–black indi-
cate negative exponents (periodic). On winding numbers diagrams (second column) 
values are depicted by color box, white color representing chaos. In (a) we highlight 
the mother-cell (center) and the daughter-cell (top), each cell shows the quadrants 
around the head point (in green color, see text). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

3. Parameter space structure

We allow varying the parameter λi in Eq. (1) by any (fixed) 
periodic sequence of a’s and b’s, and we analyzed how the asymp-
totic stable behavior evolves in an (a, b)-parameter space. In fact, 
by varying λi three parameters are varied: the two “driven states” 
a and b, and the forcing period P . Fig. 1 and Fig. 2 show six 
charts where the Lyapunov exponents were calculated for the dy-
namics of Eq. (1). In Fig. 1, first column, we have three diagrams 
for symmetric sequences {λi} [p1 = p2, see Eq. (2)]: {a1b1 . . . }
[P = 2, Fig. 1(a)]; {a2b2 . . . } [P = 4, Fig. 1(b)] and {a3b3 . . . } [P = 6, 
Fig. 1(c)]. Fig. 2, first column, shows diagrams for asymmetric se-
quences {λi} (p1 �= p2): {a1b2 . . . } [P = 3, Fig. 2(a)]; {a1b3 . . . } [P =
4, Fig. 2(b)] and {a1b4 . . . } [P = 5, Fig. 2(c)]. Lyapunov diagrams 
in Figs. 1 and 2 were constructed with a grid of 1200 × 1200 =
1.44 × 106 values of a and b. For each pair (a, b) we restart the 
iteration of Eq. (1) from fixed x0 = 0.50 as the initial value, and 
calculate the Lyapunov exponent after 2.0 × 103 iterations as a 
transient. Shaded white–grey–black colors denote periodic behav-
ior that corresponds to the negative exponents, while the posi-
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