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In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the 
equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the 
description of the vorticity by means of only two potential fields fulfilling simple transport equations. 
Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch 
transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch 
transformation is developed which also covers the case of incompressible viscous flow. The resulting field 
equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the 
method as well as perspectives towards the development of new solution strategies are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For inviscid flow, Clebsch [1,2] proposed a non-standard poten-
tial representation for the velocity field,

�u = ∇� + α∇β , (1)

in terms of the so-called Clebsch variables �, α, β . From a math-
ematical viewpoint, the potential representation (1) is a decompo-
sition of the velocity field into a curl-free part ∇� and a helicity-
free part α∇β . This decomposition is not unique; by applying the 
gauge transformation:

� −→ �′ = � + f (α,β, t)

α −→ α′ = g(α,β, t) (2)

β −→ β ′ = h(α,β, t)

an equivalent set of Clebsch variables �′, α′, β ′ is given if and only 
if the functions f , g, h fulfill the two PDE [3]:

∂ f

∂β
+ g

∂h

∂β
= α , (3)

∂ f

∂α
+ g

∂h

∂α
= 0 . (4)
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The benefit of the Clebsch transformation becomes apparent by 
application to Euler’s equations for inviscid flows:

�0 = D�u
Dt

+ ∇[P + U ]

= ∇
[

∂�

∂t
+ α

∂β

∂t
+ �u2

2
+ P + U

]
+ Dα

Dt
∇β − Dβ

Dt
∇α . (5)

By P = ∫
�−1dp the pressure function is denoted and by U the 

potential energy of the external force. The operator D/Dt = ∂/∂t +
�u · ∇ is the material time derivative. Being basically of the form

∇ [· · ·] + [· · ·]∇α + [· · ·]∇β = �0 , (6)

this vector equation can be decomposed according to

∂�

∂t
+ α

∂β

∂t
+ �u2

2
+ P + U = F (α,β, t) (7)

Dα

Dt
= −∂ F

∂β
(8)

Dβ

Dt
= ∂ F

∂α
(9)

with an unknown function F (α, β, t). By making use of the gauge 
transformation (2), however, F → 0 can be reached. The above 
three scalar field equations are a first integral of Euler’s equations 
and self-adjoint, their most intriguing feature, however, is that the 
vorticity
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�ω = 1

2
∇ × �u = 1

2
∇α × ∇β (10)

is given by the two scalar fields α, β , only. Hence, the vortex dy-
namics is reduced to the two transport equations (8), (9).

It should be mentioned that for an arbitrary velocity field �u the 
existence of the Clebsch variables �, α, β is surely given only lo-
cally. Their global existence depends on the topological features of 
the flow: in case of a non-vanishing integral of helicity, for ex-
ample for flows with closed vortex lines that form linked rings or 
with isolated points of zero vorticity global existence is not given. 
For details we refer e.g. to [4,5]. In case of global non-existence, 
completeness of the Clebsch representation may be reached by ad-
ditional pairs of variables, like: �u = ∇� + α1∇β1 + α2∇β2 + · · ·. 
Subsequently attention is paid only to the classical form (1).

The Clebsch transformation has also been applied to differ-
ent physical problems, for instance to baroclinic flow [6], Maxwell 
equations in classical electrodynamics [7], to Magnetohydrodynam-
ics [8] and even quantum theory within the context of a quanti-
zation of vortex tubes [9]. Viscous flow, however, has not yet been 
formulated in terms of Clebsch variables to our best knowledge. In 
Sect. 2 this problem is analysed and a generalization of the method 
is proposed which successfully applies to viscous flow, leading to a 
first integral of Navier–Stokes equations. In Sect. 3 the solving pro-
cedure is demonstrated by analytical means for a stagnation flow. 
Further perspectives for application of the method, e.g. to disloca-
tions in solid mechanics, are briefly discussed in Sect. 4.

2. A generalized Clebsch transformation

2.1. Non-applicability of classical Clebsch transformation to viscous flow

We consider the Navier–Stokes equations with continuity equa-
tion,

D�u
Dt

− ν	�u + ∇
[

p

�
+ U

]
= �0 , (11)

∇ · �u = 0 , (12)

assuming incompressible flow according to (12), due to the clas-
sical theory of viscous flow [2]. We remark that in the more 
general case of compressible flow the continuity equation reads 
�∇ · �u = −D�/Dt and the Eqns. (11) have to be replaced likewise 
by their more general form, frequently called Navier–Stokes–Duhem 
equations, see e.g. [10].

The essential problem inhibiting the application of the Clebsch 
transformation on viscous flow is due to the friction force den-
sity −ν	�u in the Navier–Stokes equations. Written in terms of the 
Clebsch variables, it reads:

−ν	�u = ν	β∇α − ν	α∇β

− ν (∇α · ∇)∇β + ν (∇β · ∇)∇α . (13)

Obviously, only two of the above four terms fit into the scheme 
(6), whereas the other two, subsumed to a vector field

�a := ν (∇β · ∇)∇α − ν (∇α · ∇)∇β , (14)

are of a mathematical form incompatible with (6). More general, 
the problem of finding a decomposition of the form (6) with pre-
scribed Clebsch variables α, β is handled for an arbitrary vector 
field �a in the following.

2.2. Solution procedure

We first introduce an auxiliary field ξ , fulfilling the first order 
PDE

�ω · ∇ξ = �ω · �a , (15)

with vorticity ω given according to (10). This implies the identity

�ω × ( �ω × [�a − ∇ξ
]) = �ω ( �ω · [�a − ∇ξ

]) − [�a − ∇ξ
] �ω2

= − �ω2 [�a − ∇ξ
]

(16)

and therefore the decomposition of the difference �a − ∇ξ as

�a − ∇ξ =
( �ω × [�a − ∇ξ

]) × �ω
�ω2

=
( �ω × [�a − ∇ξ

]) × (∇α × ∇β)

2 �ω2

=
( �ω × [�a − ∇ξ

]) · ∇β

2 �ω2
∇α −

( �ω × [�a − ∇ξ
]) · ∇α

2 �ω2
∇β

(17)

i.e. as linear combination of ∇α and ∇β . Obviously, the decompo-
sition (17) can be applied to an arbitrary vector field �a in order to 
reach the form (6).

Like the Clebsch variables �, α, β , the auxiliary field ξ is not 
uniquely given, since any particular solution ξp of the inhomo-
geneous linear first order PDE (15) can be superposed with any
solution ξh of the respective homogeneous PDE �ω · ∇ξh = 0. Since 
three independent solutions are given by α, β and t , the mathe-
matical theory of linear first order PDE implies ξh = F (α, β, t) for 
an arbitrary function F . As a consequence,

ξ −→ ξ ′ = ξ + F (α,β, t) (18)

is a gauge transformation for the auxiliary field which is used sub-
sequently for a favourable form of the resulting equations.

2.3. First integral of Navier–Stokes equations

The Navier–Stokes equations (11) contain identical mathemati-
cal terms as Euler’s equations (5), apart from the pressure function 
taking the special form P = p/� for incompressible flow, plus the 
friction term −ν	�u. Therefore, the Clebsch transformation delivers 
the three equations (7)–(9), supplemented by the terms resulting 
from the decomposition of the friction term according to (13) and 
(15), (17). Using (18), the function F appearing in (7)–(9) is set to 
zero by gauging, leading finally to the set of the three scalar field 
equations

∂�

∂t
+ α

∂β

∂t
+ �u2

2
+ p

�
+ U + ξ = 0 , (19)

Dα

Dt
− ν	α − �ω × [�a − ∇ξ

]
2 �ω2

· ∇α = 0 , (20)

Dβ

Dt
− ν	β − �ω × [�a − ∇ξ

]
2 �ω2

· ∇β = 0 , (21)

where again �ω and �a have been used as abbreviations according 
to (10), (14). Thus, a first integral of Navier–Stokes equations has 
been constructed, based on the generalized Clebsch transforma-
tion: Eq. (19) is a generalization of Bernoulli’s equation, whereas 
the two evolution equations (20), (21) for the vortex potentials 
α, β reveal the generic type of convection–diffusion equations with 
additional nonlinear coupling terms. The set of equations is com-
pleted by the PDE (15) for the auxiliary field ξ and the continuity 
equation (12). The latter one reads in terms of Clebsch variables 
[11]: 	� + α	β + 2∇α · ∇β = 0.
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