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In this work we study the relationship existing between the localization properties of the diluted and 
non-diluted direct electrical transmission lines with the overlap amplitude Cω

i j = 2 
∣∣∣Iωi Iωj

∣∣∣, where Iωj is 
the amplitude of the electric current function at jth cell of the transmission line for the state with 
frequency ω. We distribute two values of inductances L A and LB , according to the generalized aperiodic 
Thue–Morse m-tupling sequence. We find that the behavior of Cω

i, j is directly related to the localization 
properties of the aperiodic sequences measured by the ξ normalized participation number, the Rq

Rényi entropies and the μq moments. In addition, we generalize the scaling relationship for the overlap 

amplitude Cω
i, j , i.e., 

〈(
Cω

i, j

)2q
〉
=

(
2
N

)2q
.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of localization properties of an aperiodic system is a 
subject of great interest because these systems present an inter-
mediate behavior between periodic and quasiperiodic systems. The 
aperiodic Thue–Morse model and its generalizations [1–15] has re-
ceived great attention in the literature. In addition, the localization 
behavior of non-periodic electrical transmission lines (TL) has been 
recently studied [16–24]. In Ref. [24], the generalized Thue–Morse 
sequence (the m-tupling sequence) has been used to distribute 
two values of inductances L A and LB of the TL in aperiodic way. 
This aperiodic sequence can be defined using the inflation rule 
L A → L A Lm−1

B and LB → LB Lm−1
A , where m is an integer m ≥ 2. 

The case m = 2 corresponds to the usual Thue–Morse sequence. 
In that reference it was demonstrated that the localization behav-
ior of the usual Thue–Morse sequence (m = 2), does not belong to 
the m-tupling family with m ≥ 3, because when m changes from 
m = 2 to m = 3, the number of extended states drastically dimin-
ishes. By increasing the m values, the m-tupling family begins to 
regain its extended states, in such a way that for m � 3, the lo-
calization behavior of the m-tupling resembles the m = 2 case (the 
usual Thue–Morse case).

In the context of quantum correlation, for the case of two-state 
systems (qubit), the Cα

i j concurrence has been proposed as a new 
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way to measure the entanglement [25–27]. Entanglement is a kind 
of quantum correlation without a classical counterpart, which ap-
pears from the direct or indirect interaction between two or more 
quantum systems. If the systems are correlated, then a measure-
ment process performed on one affects the other, even if individual 
systems are spatially separated. For the general one-particle state, 
the entanglement between a pair of qubits, qubit i and j, called 
pairwise entanglement, can be quantified by the concurrence Cα

i j , 
and the entanglement amongst the qubits is then the entangle-
ment between the sites themselves [27,28]. In addition, in the 
single-particle space the concurrence is named pairwise concur-
rence, and states that have a large minimum pairwise concurrence 
can be said to share entanglement better [25]. In general, the one-
particle state is the superposition |φ (E)〉 = ∑N

j=1 φ j (E) | j〉, where 
φ j (E) is the amplitude of the quantum wave function at jth site 
for the state with energy E . In this case, the C E

ij pairwise con-

currence in this state is given by C E
ij = 2 

∣∣φi (E)φ j (E)
∣∣. As an ap-

plication to the electronic case, the relation between localization 
properties and entanglement has been recently studied in one-
particle states [28–35].

Motivated by this quantum formalism we can define the “over-

lap amplitude” Cω
i j = 2 

∣∣∣Iωi Iωj

∣∣∣ to describe the overlap between 
states i and j in the study of classical electric transmission lines. 
Here Iωj is the amplitude of the electric current function at jth cell 
of the transmission line for the state with frequency ω. We study 
the relationship between localization properties, measured by the 
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participation number P (ω), the normalized participation number 
ξ (ω) = 1

N P (ω), the μq (ω) moments, the Rq (ω) Rényi entropies, 

and the power to 2q of the overlap amplitude 
〈(

Cω
i j

)2q
〉
. To do 

a better comparison between the localization properties and the 
behavior of the overlap amplitude Cω

i j , we study the same model 
and we use the same numerical values of the parameters of the 
m-tupling family used in Ref. [24].

This paper is organized as follows. Section 2 describes the 
model and methods. Section 3 shows the most important numeri-
cal results and in Section 4 we give the conclusions of our work.

2. Model and method

2.1. Direct electrical transmission lines

The dynamic equation for the direct diagonal transmission lines 
formed by horizontal inductances L j and vertical constant capaci-
tances C j = C0, ∀ j is given by(

2 − ω2C0L j

)
I j − I j−1 − I j+1 = 0 (1)

where ω is the frequency. For each ω frequency belonging to the 
spectrum, we can define the overlap amplitude Cω

i j between two 
sites i and j of the transmission line in the following form

Cω
i j = 2

∣∣∣Iωi Iωj

∣∣∣ (2)

This expression defines the overlap amplitude Cω
i j between the 

electric current of two cells of the transmission line, where Iωj is 
the amplitude of the electric current function at jth cell of the 
transmission line for the state with frequency ω and the prob-

ability distribution 
{∣∣∣Iωj

∣∣∣2
}

satisfies the normalization condition 

∑N
j=1

∣∣∣Iωj

∣∣∣2 = 1. Using the dynamic equation (1), the ω frequencies 

belonging to the spectrum fulfill the condition 
∣∣2 − ω2C0L j

∣∣ ≤ 2. 
For the homogeneous distribution of Iωj , namely for Iωj = 1√

N
, ∀ j, 

we obtain Cω
i j = 2

N . This case correspond to the fully extended 
function. On the contrary, for fully localized electric current func-
tion, such that Iωj = 1 and Iωi 
= j = 0, ∀i, the overlap amplitude 
becomes zero, i.e., Cω

i j = 0. As a consequence, for extended and lo-

calized I (ω) electric current function it holds that Cω
i j ≤ 2

N . In this 
way we can see a close relationship between localization proper-
ties and the overlap amplitude. Given that the overlap amplitude 
Cω

i j depends on each pair of sites, for each specific ω frequency, 

we can define the average overlap amplitude Cω =
〈
Cω

i j

〉
[28]

Cω =
〈
Cω

i j

〉
=

〈
2
∣∣∣Iωi Iωj

∣∣∣〉 = 1

d

∑
i< j

Cω
i j (3)

where d = N (N − 1) /2. In addition, we can define the overlap am-
plitude C = 〈Cω〉 averaged over all frequencies belonging to the 
spectrum in the following way [33]

C = 〈Cω〉 = 1

Nω

∑
ω

Cω (4)

where Nω is the number of frequencies belonging to the spectrum.

2.2. The relationship between the μq moments, the Rq Rényi entropies 
and the Cω overlap amplitude

In what follows, we want to find the general relationship ex-

isting between the overlap amplitude Cω =
〈
Cω

i j

〉
, the μq moments 

and the Rq Rényi entropies, as a function of the arbitrary index q. 
In the first place, let us calculate the power to 2q of the overlap 
amplitude Cω

i j , namely

(
Cω

i j

)2q = 22q
∣∣Iωi

∣∣2q
∣∣∣Iωj

∣∣∣2q
(5)

The average of this quantity, 
〈(

Cω
i j

)2q
〉
, can be obtained using the 

definition (3), i.e.,〈(
Cω

i j

)2q
〉
= 1

d

∑
i< j

(
Cω

i j

)2q
(6)

where d = N (N − 1) /2. Using (5) we obtain

〈(
Cω

i j

)2q
〉
= 22q−1

d

⎛
⎝2

∑
i< j

∣∣Iωi
∣∣2q

∣∣∣Iωj

∣∣∣2q

⎞
⎠ (7)

Now, let us define the μq moments of the electric current function 
I (ω) in the usual way, i.e.,

μq (ω) =
N∑

j=1

∣∣∣Iωj

∣∣∣2q
(8)

The squared μq moments are given by

(
μq

)2 =
⎛
⎝ N∑

j=1

∣∣∣Iωj

∣∣∣2q

⎞
⎠

2

(9)

which can written as

(
μq

)2 =
⎛
⎝2

∑
i< j

∣∣Iωi
∣∣2q

∣∣∣Iωj

∣∣∣2q

⎞
⎠ +

N∑
j=1

∣∣∣Iωj

∣∣∣4q
(10)

The last term of the right side corresponds to the μ2q moments, 

i.e., μ2q = ∑N
j=1

∣∣∣Iωj

∣∣∣4q
, then

(
μq

)2 =
⎛
⎝2

∑
i< j

∣∣Iωi
∣∣2q

∣∣∣Iωj

∣∣∣2q

⎞
⎠ + μ2q (11)

Finally, the sum can be expressed as a function of the moments 
μq and μ2q ,⎛
⎝2

N∑
i< j

|Ii |2q
∣∣I j

∣∣2q

⎞
⎠ = (

μq
)2 − μ2q (12)

Inserting this result in relation (7), we obtain 
〈(

Cω
i j

)2q
〉

as a func-

tion of the moments μq and μ2q , namely,
〈(

Cω
i j

)2q
〉
= 22q−1

d

{(
μq

)2 − μ2q

}
(13)

This general result is a new indication of the relationship existing 
between the localization properties contained in the μq moments 

and the overlap amplitude 
〈(

Cω
i j

)2q
〉
. This general result is still 

valid for the quantum case of concurrence.
For the special case q = 1/2 we obtain [28,30]

Cω = 1

d

⎧⎪⎨
⎪⎩

⎛
⎝ N∑

j=1

∣∣∣Iωj

∣∣∣
⎞
⎠

2

− 1

⎫⎪⎬
⎪⎭ (14)



Download English Version:

https://daneshyari.com/en/article/1860245

Download Persian Version:

https://daneshyari.com/article/1860245

Daneshyari.com

https://daneshyari.com/en/article/1860245
https://daneshyari.com/article/1860245
https://daneshyari.com

