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We consider a Glauber–Fock oscillator and show that diffraction can be managed. We show how to 
design arrays of waveguides where light beams experience zero diffraction. We find an exact analytical 
family of nondiffracting localized solution. We predict discrete parametric oscillation in the Glauber–Fock 
oscillator.
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1. Introduction

Diffraction is a fundamental process in physics. It is well known 
that a wave is diffracted if it passes through an opening or if there 
is an obstacle in its path. Diffraction leads to the broadening of an 
initial intensity profile in space. Propagation-invariant waves have 
attracted a considerable interest over the years. The most familiar 
example of nondiffracting wave is that of a plane wave propagat-
ing in free space. Other nontrivial nondiffracting waves for various 
physical systems have been intensively investigated by many au-
thors. Durnin introduced diffractionless (nonspreading) solution of 
the free-space scalar wave equation almost three decades ago [1]. 
His solution is in the form of a Bessel function in the transverse 
direction and the corresponding intensity profile remains invariant 
during propagation unlike other beams that spread during propa-
gation. In the framework of quantum mechanics, only the plane 
wave had been known as a nondiffracting wave in 1-D before 
Berry and Balazs. They theoretically showed another nonspread-
ing solution was available for the Schrodinger equation describing 
a free particle [2]. Their solution is unique in the sense that it self-
accelerates although no external potential exists. The accelerating 
behavior is not consistent with the Ehrenfest theorem, which de-
scribes the motion of the center of mass of the wave packet. The 
reason why the Ehrenfest theorem doesn’t work is because of the 
nonintegrability of the Airy function.

The physics of photon propagation in discrete lattices is very 
rich and has been extensively studied by many authors. Non-
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diffracting waves in media such as waveguide or nonlinear ma-
terials are interesting to study. Diffraction in such an array of 
waveguides is governed by hopping light from site to site through 
optical tunneling. Discrete diffraction is different from continuous 
diffraction. As an example, if light is initially excited at only one 
waveguide of a 1-D periodic array of waveguide, then light spreads 
into two main lobes with several secondary peaks between them. 
The idea to control discrete diffraction has attracted a special at-
tention. The case of optical field propagation in a linearly coupled, 
infinite array of one dimensional waveguides was considered in 
[3] and anomalous diffraction (negative discrete diffraction) and 
diffraction-free cases were theoretically discussed and experimen-
tally realized. Discrete diffraction was shown to be controlled in 
size and sign by the input conditions and diffractionless beams and 
focusing of normally diverging beams were discussed in homoge-
neous waveguide arrays [4]. The self-collimation effect where the 
spatial width of a light beam does not change over hundreds of 
free-space diffraction lengths was realized in a macroscopic pho-
tonic lattice [5]. Periodic photonic structures where the strength of 
diffraction can be made normal, anomalous or zero in a very broad 
frequency range were introduced [6].

One special system where discrete diffraction can be studied is 
the semi-infinite and asymmetric Glauber Fock lattice that has re-
cently been introduced into optics community [7,8]. The system is 
composed of an array of evanescently coupled waveguides with a 
square-root distribution of the coupling between adjacent guides 
[7]. The first experimental realization with a direct observation of 
the classical analogue of Fock state displacements was presented 
in [8]. The Glauber–Fock photonic lattice is interesting in the sense 
that every excited waveguide represents a Fock state and the 
system admits an exact analytical solution. In [9], the Ermakov–
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Lewis invariant is constructed for the Glauber–Fock oscillator with 
propagation distance dependent tunneling amplitude and refrac-
tive index gradients. Some interesting effects can be observed in a 
Glauber–Fock system in the presence of the refractive index gradi-
ent, which was shown to be accomplished by varying the waveg-
uide writing velocity of the femtosecond laser [10]. For example 
both periodic collapses and revivals in a discrete Glauber–Fock os-
cillator were observed in the intensity evolution. It was shown that 
periodically changing tunneling amplitude leads to Bloch-like os-
cillations and dynamic delocalization depending on the oscillation 
frequency and strength of refractive index gradient [11]. It is in-
teresting to observe the Bloch-like oscillations in spite of the fact 
that the evanescently coupled waveguide array has nonuniform 
coupling and semi-infinite. Dynamic localization and quantum self-
imaging are other interesting effects that occur in periodical lattice. 
These two effects were theoretically discussed and shown to be 
possible in a Glauber–Fock oscillator [12]. Glauber–Fock oscilla-
tor was shown to be engineered by the method of shortcuts to 
adiabaticity [13]. Recently, geometric phase for a Glauber–Fock os-
cillator lattice was measured [14]. Quantum Rabi model based on 
light transport in two decoupled semi infinite binary tight binding 
photonic lattice with a square-root distribution of the coupling be-
tween neighboring sites was experimentally realized in [15]. The 
standard Glauber–Fock oscillator is semi-infinite and all the ex-
periments mentioned above were realized in an effectively semi 
infinite system (the dimension in the transverse direction is long 
enough). The effect of truncation in a finite Glauber–Fock oscillator 
was discussed in [16]. The Glauber–Fock oscillator was general-
ized to include the nonlinear interaction and the corresponding 
system was theoretically explored in [17]. In this paper, we con-
sider Glauber–Fock oscillator with propagation distance dependent 
tunneling amplitude and refractive index gradient. The purpose of 
this paper to find a way to obtain difractionless propagating initial 
excitations. We will find a solution that is capable of maintaining 
its spatial form during propagation. In this way, engineered diffrac-
tion can be realized. Secondly, we study parametric oscillation in 
the system.

2. Model

We consider a semi-infinite Glauber–Fock oscillator array con-
sisting of evanescently coupled waveguides. The tunneling ampli-
tude through which particles are transferred from site to site in-
creases with the square root of the site number n. We suppose 
that tunneling amplitude and linearly increasing refractive index 
gradient are z-dependent, where z is the normalized propagation 
distance. The equation satisfied by the complex field amplitude at 
the n-th waveguide is given by [9]

i∂zcn + F n cn + J (
√

n + 1cn+1 + √
ncn−1) = 0 (1)

where n = 0, 1, 2, ..., J = J (z) is the z-dependent first order tun-
neling amplitude, F = F (z) is the z-dependent refractive index 
gradient and cn is the field amplitude at the n-th waveguide. Note 
that cn(z) = 0 for n < 0. Therefore our system is semi-infinite and 
asymmetric.

To find the solution, we follow the method introduced in [9]. 
Let us write the state vector as |ψ> = ∑∞

n=0 cn(z)|n>, where the 
Fock state |n> corresponds to situation when only the waveguide 
with number n is excited [8]. Substituting this solution into the 
equation (1) yields the Schrodinger equation Hψ = i ∂ψ

∂z with h̄ = 1. 
The corresponding Hamiltonian reads

H = −
(

F (z)n̂ + J (z)
(

â + â†
))

(2)

where the bosonic creation and annihilation operators satisfy 
â†|n> = √

n + 1|n + 1> and â|n> = √
n|n − 1>, respectively and 

the number operator satisfies n̂|n> = n|n>. We can transform this 
Hamiltonian using â = q+ip√

2
and â† = q−ip√

2
, where q and p nor-

malized position and momentum operators, respectively. Then the 
Hamiltonian can be rewritten in the following form

H = −
(

p2

2m
+ m

2
ω2q2 + √

2 Jq − F

2

)
(3)

where the z-dependent mass and frequency are defined by m =
1/F (z) and ω2 = F (z)2.

The exact analytical solution of this Hamiltonian is available 
if we change z→Z = −z. This is the Hamiltonian of a quantum 
harmonic oscillator with Z -dependent mass, frequency, and exter-
nal driving force. Let us now obtain an exact analytical solution. 
We first transform the coordinate according to q′ = q−qc

L , where 
the Z -dependent function qc(Z) describes translation and L(Z) is 
a Z -dependent dimensionless scale factor to be determined later. 
More precisely, the center of the wave packet moves according 
to qc(Z) and the width of the wave packet changes according to 
L(Z). Under this coordinate transformation, the Z-derivative oper-
ator transforms as ∂Z → ∂Z − L−1(L̇q′ + q̇c)∂q′ , where dot denotes 
derivation with respect to Z . In the accelerating frame, we will 
seek the solution of the form

ψn(q
′, Z) = exp (i�)

φn(q′, Z)√
L

(4)

where the position dependent phase reads �(q′, Z) = m(αq′ +
β
2 q′2 + S), α, β and S are Z -dependent functions to be determined. 
Substitute this ansatz into the corresponding Schrodinger equation 
and demand that the resulting equation includes harmonic and 
linear potential terms. Therefore we choose α = Lq̇c , β = LL̇ and 
Ṡ + ṁ

m S = 1
2 q̇c

2 − ω2

2 q2
c −

√
2 Jqc
m + F

2m . The resulting equation reads

− 1

2mL2

∂2φ

∂q′2 + (
m

2
	2q′2 + Uq′)φ = i

∂φ

∂ Z
(5)

where 	2 = L(L̈ + ṁ
m L̇ +ω2L) and U = mL(q̈c + ṁ

m q̇c +ω2qc +√
2 J

m ). 
We can now determine L and qc .

L̈ + ṁ

m
L̇ + ω2L = 1

m2L3
(6)

q̈c + ṁ

m
q̇c + ω2qc + √

2
J

m
= 0 (7)

The former one (known as the Ermakov equation) is easy to solve 
for the initial condition L̇(Z = 0) = 0. It is given by L(Z) = 1. 
Therefore, the quadratic term in �(q′, Z) disappears. The solution 
of the latter equation will be discussed below.

With the choices (6), (7), the linear potential is eliminated 
from the equation (5) and the resulting equation for φn(q′) can 
be solved analytically. It is given by

φn(q
′, Z) = Nn exp

(
i

∫
En

mL2
dZ − q′2

2

)
Hn(q

′) (8)

where En = (n + 1
2 ) and Hn are the Hermite polynomials and Nn

is the normalization constant. Transforming backwards yields the 
exact solution. We have analytically found the exact solution. Our 
solution and the one in [9] are equivalent but our solution is ad-
vantageous since it is written in terms of the width and the center 
of mass of the wave packet. As we shall see below, the equation 
(7) enables us to see the dynamics of the system clearly.

Let us now write the exact solution

ψn = Nn exp

(
imq̇cq + iεn − (q − qc)

2

2

)
Hn(q − qc) (9)
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