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Recurrence networks are complex networks, constructed from time series data, having several practical 
applications. Though their properties when constructed with the threshold value ε chosen at or just 
above the percolation threshold of the network are quite well understood, what happens as the threshold 
increases beyond the usual operational window is still not clear from a complex network perspective. 
The present Letter is focused mainly on the network properties at intermediate-to-large values of 
the recurrence threshold, for which no systematic study has been performed so far. We argue, with 
numerical support, that recurrence networks constructed from chaotic attractors with ε equal to the 
usual recurrence threshold or slightly above cannot, in general, show small-world property. However, if 
the threshold is further increased, the recurrence network topology initially changes to a small-world
structure and finally to that of a classical random graph as the threshold approaches the size of the 
strange attractor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last two decades, complex network theory has emerged 
as a popular tool for analyzing complex and spatially extended sys-
tems [1–3]. It has found applications in a wide range of fields 
including sociology [4,5], communication [6,7] and biological sci-
ences [8,9]. The theory of complex networks initially started with 
random graphs (RG) studied in detail by Erdős and Rényi (E–R) 
[10]. For RGs, there is a fixed probability p for two nodes being 
connected and one can show that for a sufficiently large number 
of nodes N , the degree distribution P (k) tends to a Poissonian.

The E–R model guided our thinking about complex networks 
for many decades until the discovery by Barabasi and co-workers 
[11,12] nearly two decades back that the topology and structure 
of most networks around us are radically different. For exam-
ple, many networks in the real world such as, the World Wide 
Web (WWW) [13], networks of social interactions [14], protein 
and metabolic networks [15] and technological networks [16], tend 
to obey certain self-organizing principles in their evolution either 
due to some inherent property of the system or due to the na-
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ture of human interactions as in social networks. The topology of 
such networks shows a scale invariance with the degree distribu-
tion obeying a power law, P (k) ∝ k−γ , and the value of γ is found 
to be typically between 2 and 3. The discovery of such scale-free
(SF) networks triggered a lot of interest in the theory of complex 
networks.

Along with the discovery of SF networks, the concept of small-
world (SW) networks was introduced by Watts and Strogatz [17]. 
Though the classical RGs are amenable to a great deal of mathe-
matical analysis, they are poor models as far as real networks are 
concerned. Firstly, they show poor clustering and their clustering 
coefficient (CC) is directly proportional to p. Secondly, for a given 
p, as the number of nodes N increases, the average degree < k >
also increases correspondingly. Consequently, for p above a thresh-
old value, the characteristic path length (CPL) of RGs remains very 
small and independent of N .

Watts and Strogatz (W–S) showed that, starting from a ring 
lattice of N nodes with nearest neighbor coupling and randomly 
re-wiring a small fraction β of edges, results in a complex net-
work with high CC compared to the RG and small CPL comparable 
to that of a RG for a range of values of β . Moreover, for such net-
works, as N increases, the CPL increases only as log N . Thus the 
W–S model displays many characteristic properties of real world 
networks and provides one possibility of obtaining the SW prop-
erty, often found in real world networks, with different levels of 
complexity by tuning β .
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The above developments resulted in complex networks and the 
related measures being applied as tools in many areas of research. 
The most recent among them is the analysis of time series from 
dynamical systems using statistical measures of complex networks. 
To study many dynamical processes in the real world, one often re-
sorts to the analysis of time series obtained from the system. An 
area of special interest is where the underlying system appears 
to show deterministic nonlinear behavior. The methods and mea-
sures of nonlinear time series analysis and chaos theory [18,19]
are commonly used in such cases. In the last few years, measures 
based on complex networks have gained a lot of importance in 
nonlinear time series analysis. All such measures propose a map-
ping from the time series domain to the network domain and then 
proceed to characterize the dynamical system in terms of the sta-
tistical measures of the resulting complex network. By doing this, 
one expects to resolve complimentary features that are not cap-
tured by conventional methods of time series analysis, especially 
the structural and topological properties of the underlying chaotic 
attractor.

Even though several methods have been proposed [20–22] to 
convert time series into networks, an approach incorporating the 
generic property of recurrence [23] of a dynamical system has 
been prominently applied for the conversion of time series into 
networks. In this method, the time series is first embedded in a 
suitable dimension M using time delay co-ordinates [24] to recon-
struct the attractor. Every point on the attractor is identified as 
a node and the network can be constructed in two ways, either 
by taking a fixed number of nearest neighbors [25] or by taking 
a fixed hyper-sphere of radius ε with the point as the center. In 
this work, we consider the second method for the construction 
of the network where a reference node ı is connected to another 
node j if the Euclidean distance dij between the corresponding 
points on the attractor in the reconstructed space is less than or 
equal to the recurrence threshold ε , that is, if dij ≤ ε . The result-
ing complex network, called the ε – recurrence network or simply 
recurrence network (RN) [26,27], has been shown to have great po-
tential for a wide range of practical applications, from identifying 
critical transitions in dynamical systems [28] to the classification 
of cardio-vascular time series [29]. Note that, by construction, the 
RN is an undirected and unweighted graph with a symmetric and 
binary adjacency matrix A, with elements Aij = 1 or 0, depending 
on whether the two nodes ı and j are connected or not.

Though RNs and related statistical measures are widely applied 
in nonlinear time series analysis, their properties, as the thresh-
old is increased, are not fully understood from a complex network 
perspective. It is well known that all RNs have two properties in 
common. Firstly, the degree distribution of every RN is unique and 
is closely related to the probability density variations over the em-
bedded attractor from which it is mapped [30]. We will discuss 
this in detail below. Secondly, there is an absence of long range 
connections as the maximum edge length is limited by the recur-
rence threshold ε . By definition, RNs are random geometric graphs 
(RGG) in the considered system’s phase space [30–32]. Here RGGs 
are RGs where each vertex is randomly assigned co-ordinates in 
some metric space according to some prescribed probability distri-
bution function, and vertices are connected if and only if they are 
separated by less than a certain maximum distance [33].

In this Letter, we numerically investigate the specific proper-
ties of RNs using three primary measures of a complex network, 
the degree distribution, the CC and the CPL. In particular, we con-
sider the range of threshold values beyond the small operational 
window usually used for the construction of the RN and check 
whether the resulting network can show the properties of either 
RGs or SF networks or behave as a small-world network.

Fig. 1. Construction of the RN from the time series of the standard Rössler attractor’s 
y – component using time step �t = 0.05 with time delay τ = 24 and M = 3. The 
time series and the embedded attractor are shown (top and bottom, respectively) 
in the left panel while the RN and its degree distribution are shown in the right 
panel. The RN is constructed taking every point on the attractor as a node and 
connecting every node to all other nodes within a recurrence threshold of ε = 0.1
(see text). Error bars of P (k) originate from the fact that for a network with N
nodes, the number n of nodes with a given degree k has a standard error of √n(k). 
For n(k) → 0, its value is normalized to 1, the minimum count.

2. Numerical results

All numerical simulations are done using N = 2000 nodes, un-
less otherwise mentioned. For the construction of SF networks, we 
use the specific scheme of preferential attachment discussed in de-
tail in [34]. Here we start with a small number of nodes m0. A new 
node is then added which gets connected to m number of existing 
nodes. This process is repeated, increasing the number of edges 
by m for each newly connected node. By changing either m0 or m
we can construct SF networks with different γ . Here we do both 
and construct the SF networks using 3 values for m0 (2, 4 and 10) 
and in each case, use 3 different values for m, namely, 1, 2 and 4. 
Moreover, the RGs are constructed for different values of p. Time 
series from several standard low-dimensional chaotic systems are 
used for the construction of RNs. For continuous systems (flows) in 
3D, we use the embedding dimension M = 3 and for discrete sys-
tems (maps) in 2D, we use M = 2. For all systems, we use the time 
series from the y – component and for all continuous systems, the 
time step �t used for numerical integration is 0.05 with the time 
delay computed by the automated algorithmic scheme proposed 
by us [35]. The values of time delay used for the Rössler, Lorenz, 
Duffing and Ueda systems are 24, 6, 25 and 13 respectively.

To get a quantitatively comparable value for the percolation 
threshold ε and to make the comparison between systems possi-
ble, we first transform the time series to a uniform deviate so that 
the size of the reconstructed attractor is re-scaled into a unit cube 
in M dimensions. This transformation is not a trivial rescaling as 
it stretches the embedded attractor uniformly in all directions. We 
have already shown [35,36] how effective this transformation is in 
computing conventional measures such as, correlation dimension 
D2 and entropy K2, for low as well as high-dimensional systems 
from time series [37]. As a result of the uniform deviate transfor-
mation, we have found that it is possible to have a small identical 
range of recurrence threshold �ε , that can be taken as the opera-
tional window for constructing the RN from time series of different 
systems for a given embedding dimension M [38]. Here we choose 
the value of ε as the minimum of this range where the giant com-
ponent of the RN just appears, as suggested by Donges et al. [32]. 
The value of ε is found to be 0.06 for M = 2 and 0.1 for M = 3
for N ≤ 10000 as discussed in detail in [38]. The RN from a ran-
dom (white noise) time series is also constructed using M = 3 (for 
comparison with the RNs from chaotic systems) whose degree dis-
tribution is Poissonian with < k >≈ 7 for the selected ε . We find 
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