Physics Letters A 380 (2016) 2724-2737

Contents lists available at ScienceDirect

PHYSICS LETTERS A

Physics Letters A

www.elsevier.com/locate/pla

On singular and sincerely singular compact patterns

Philip Rosenau *, Alon Zilburg

@ CrossMark

School of Mathematics, Tel Aviv University, Tel Aviv 69978, Israel

ARTICLE INFO

Article history:

Received 12 April 2016

Received in revised form 20 June 2016
Accepted 21 June 2016

Available online 27 June 2016
Communicated by C.R. Doering

Keywords:

Compact patterns
Singularity

Sincere singularity
Nonlinear dispersion
Nonlinear diffusion

ABSTRACT

A third order dispersive equation uy + (u™)y + %[u"VZub]x =0 is used to explore two very different
classes of compact patterns. In the first, the prevailing singularity at the edge induces traveling
compactons, solitary waves with a compact support. In the second, the singularity induced at the
perimeter of the initial excitation, entraps the dynamics within the domain’s interior (nonetheless, certain
very singular excitations may escape it). Here, overlapping compactons undergo interaction which may
result in an interchange of their positions, or form other structures, all confined within their initial
support. We conjecture, and affirm it empirically, that whenever the system admits more than one type of
compactons, only the least singular compactons may be evolutionary. The entrapment due to singularities
is also unfolded and confirmed numerically in a class of diffusive equations u, = u¥vV2u" with k > 1 and
n > 0 with excitations entrapped within their initial support observed to converge toward a space-time
separable structure. A similar effect is also found in a class of nonlinear Klein-Gordon Equations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The solitary patterns in a continuous medium, as predicted by
the equations of mathematical physics, think solitons, are fairly lo-
calized yet their analyticity causes their tails to extend indefinitely.
Over two decades ago we have shown [1-3] that truly compact
dispersive structures are possible but in order to achieve a true
localization, one needs a singularity inducing mechanism which
breaks their analytical spell. In this letter we dive deeper into the
relations between the nature of such singularities and the resulting
compact patterns (few of the aspects of singularity shaped pat-
terns in 1 — D were briefly touched upon in [3]). Lacking a rigorous
proof, the formal analysis is backed by extensive numerical studies
to assure that conjectures which stand up to reason, stand to real-
ity as well. Our presentation will be mostly confined to a class of
third order partial differential dispersive equations

1
Cn(m,a-+Db): ue+ U™+ E[uﬂvzu”lx =0, l<n=a+b
(1.1)

with the subindex N indicating a N — D spatial span. The 1 — D
problem will be discussed in this and the following section,
whereas the N — D problem (N > 1) will be addressed in sec. 3.
Two types of singularities are found with the stronger one, referred

* Corresponding author.
E-mail address: rosenau@post.tau.ac.il (P. Rosenau).

http://dx.doi.org/10.1016/j.physleta.2016.06.040
0375-9601/© 2016 Elsevier B.V. All rights reserved.

henceforth as a sincere singularity, being capable of entrapping the
dynamics within the initial domain. To stress the ubiquitous as-
pect of our results we discuss in Appendix B a class of dissipative
equations

u =ufvau", n>0,k>1,

and find patterns shaped by singularities with entrapment fea-
tures very similar to ones found in dispersive medium. In particu-
lar, apart of the well documented role of singularities to induce
compact diffusive patterns which converge to a universal self-
similar state [4], we also unfold a sincere singularity which con-
fines the diffusion within its initial support where it approaches
very quickly a time-space separable structure. Yet another applica-
tion, briefly touched upon in the last section, is afforded by a class
of nonlinear Klein-Gordon equations.

Returning to Eq. (1.1) [3], we note that in 1 — D it generalizes
the more familiar X(m, n) equation

K(m,n): ur+ (um)x + (un)xxx =0, —1<n, (1.2)

and provides a more natural framework to study the scope of non-
linear dispersion. In fact, the a=b =1 case was derived in [5] in
the study of suspensions whereas the m=3,4, witha=3, b=1,
cases correspond to a Lagrange map of the K-dV and modified K-dV
equations, respectively, see Appendix A for more details. In both
(1.1) and (1.2) the various coefficients may, modulus the sign, be
normalized at will. In what follows we shall use the following pa-
rameters

w=1+b—a and wnp=m+b—a. (1.3)
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w plays a crucial role. For instance, if n =2 then Eq. (1.1) may be
rewritten as

U + (U™)x + Ullxxx + WUxlxx = 0.

As we shall see shortly, since at u = 0 the highest order spa-
tial operator degenerates, the lower order terms acquire a crucial
impact on the dynamics with w = 0 dividing between two very
different regimes. wuyuyxy may be viewed as a diffusion with wuy
playing the role of a diffusion coefficient which changes its sign on
the two sides of a pulse. Clearly, a change in the sign of @ dramat-
ically changes the impact of such a term. For n # 2, and the disper-
sive part casted as [u"?(uux + D(w)u3)],, D(w) = (@ +n—3)/2,
things are essentially the same: w controls the lower order part of
the dispersion.

In addition, when w # 0, 1, fu‘” is conserved, which enables
an alternative form of Eq. (1.1)

vt+A(vm*)X+B[v”* (vb*) ] =0 where v=u?, (1.4)
XXdx
and
3b— 2
m*:%’a*:—a’b*:i,/‘:7a)m andB:—a).
2w 2w m+b—a n

In the b=a+ 1 case, equation (1.1) admits an Hamiltonian, [3]

& :/ [%ﬂulﬂﬂ T 2@ Jlr 12 [(“H])x]z} dx.

In addition, if m = 2a + 3 it also conserves

1
2 2a+4
xu“—2Q2a+3)t| ——u
/{ (20+3) <2a+4

e (N

which through the Hamiltonian formulation is related to its scaling
symmetry.

Our main conjecture concerning equation (1.1) is: Wherein
more than one profile of either traveling or stationary compactons
is admissible, only compactons of lesser singularity may be evolu-
tionary whereas the other compactons decompose. Based on for-
mal analysis of the traveling and stationary waves aided by our
numerical study we find:

1. 1 <w (i.e.,a < b): Only the traveling compactons are admissi-
ble. No other compact structures were detected.

2.0<w =<1 (ie.,b <a<b+1): Both traveling and stationary
compactons are in principle admissible. As conjectured, nu-
merical studies reveal that the traveling compactons being of
lesser singularity, are the ones to materialize.

3. w <0 (ie,b+ 1 < a): Both traveling and stationary com-
pactons are in principle admissible. As conjectured, numerical
studies confirm that the stationary compactons which in this
parametric regime are less singular, are the ones to materi-
alize. Moreover, both the results of [3] (see also Appendix A)
and numerical simulations clearly indicate that interaction be-
tween overlapping stationary compactons typically results in
an interchange of their positions, all confined within their ini-
tial support.

4. w =0 (i.e,, b+ 1=a): This is an exceptional case. Though sta-
tionary compactons are less singular than the traveling ones
which decompose at once, after a while they form a precursor
of negative amplitude and blow up. All in all, numerical stud-
ies indicate that in the w = 0 case there are no viable compact
structures.

Summarizing our results: We have verified numerically our
conjecture that whenever more than one type of compactons
is admissible, the one of lesser singularity may be evolutionary,
whereas the other type decomposes. Our simulations of equa-
tion (1.1) have been carried using a Local Discontinuous Galerkin
method (LDG) [6] and a choice of numerical fluxes based on [13].
To recheck the validity of our results, part of our simulations were
redone using a code based on a pseudo-spectral method developed
to address nonlinear quintic PDEs [14].

Though not directly related to our interests, we comment on
recent inquiries about the well posedness of the initial value prob-
lem of the K(2,2) and related equations for initial data which are
not uniformly bounded away from zero [11]. Numerical studies re-
ported in [12] present a sequence of narrowing initial pulses which
induce a flow that may lose in the H2 norm its continuous de-
pendence on the initial datum. Though this may evoke challenging
questions, we have found that in the realm of our interest, com-
pactly supported initial data which are typically much wider than
a single compacton, the issues raised in [12] do not arise. More-
over, not only we have found, using two very different numerical
methods, our equations to be well behaved, but in hundreds of nu-
merical simulations both the residuum left after the emergence of
compactons out of initial datum, and the residuum left after in-
teraction of compactons, have never shown behavior which could
cast any doubt in the validity of our results or of the underlying
equations. To farther enhance the credibility of our assertions, we
have repeatedly employed in our simulations spatial refinements
to eliminate potential spurious phenomena.

2. Compact structures on a line
2.1. Stationary patterns
Setting u; = 0 and integrating Eq. (1.1) yields
u™ 4 %u" (uP)x = Eo.
Multiplying by u~%(ub),, integrating again and rearranging yields

Loy L2z o L opg et (21)
Wm 2 b—a
where Eg and Eq are constants of integration. Eq. (2.1) describes a
2-parameter class of stationary periodic solutions. For b > a > 0, to
generate candidates for compactification and to avoid an overly
singular solution at u =0, we set E; =0 and Egp > 0. To this end
we locate the troughs of the periodic wave at u = 0 where the de-
generacy of the highest order operator and the consequent loss of
uniqueness enable to form a compact solution by gluing one period
between two subsequent troughs with the trivial ground state. Let
one of such troughs be located at, say x =0, then from Eq. (2.1),
u~x*"m.

A compactification at this point would mean that u ~ H(x)x*/",
where H(x) is the Heaviside function. Since, however,

U Wby~ H®) = [u0 @by ~ 8(x)

it cannot be balanced by the convective counterpart (u™)y in (1.1).
Thus when b > a no stationary compact solutions seem possible.

If m>a—b >0, the least singular solutions call for Eg =0 in
(2.1) and near a trough of the periodic solution

u~x/b, (2.2)

To compactify this solution we remove everything but one
period between two consecutive troughs. Near the trough u ~
Hx)x'/? and ub ~ (x 4+ a1x% + ...)H(x). Thus
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