
Physics Letters A 380 (2016) 2762–2766

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Effect of small scale motions on dynamo actions generated
by the Beltrami-like flows

Mingtian Xu

Department of Engineering Mechanics, School of Civil Engineering, Shandong University, Jinan, 250061, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 August 2015
Received in revised form 12 May 2016
Accepted 18 June 2016
Available online 28 June 2016
Communicated by F. Porcelli

Keywords:
Dynamo action
Geodynamo
Solar dynamo
Integral equation approach

The geodynamo and solar dynamo are driven by the turbulent flows which involve motions of various 
scales. Of particular interest is what role is played by the small scale motions in these dynamos. In this 
paper, the integral equation approach is employed to investigate the effect of the small scale motions 
on dynamo actions driven by multiscale Beltrami-like flows in a cylindrical vessel. The result shows that 
some small scale motions can trigger a transition of a dynamo from a steady to an unsteady state. Our 
results also show that when the poloidal components of the small and large scale flows share the same 
direction in the equatorial plane, the small scale flows have more positive or less detrimental effect 
on the onsets of the dynamo actions in comparison with the case that the poloidal components have 
different directions. These findings shed light on the effect of the small scale turbulence on dynamo 
actions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is believed that the origin of the magnetic fields of most 
celestial bodies is the dynamo action which converts the kinetic 
energy of the electrical conducting fluids to the electromagnetic 
energy [1,2]. Usually, these dynamos are driven by the electrically 
conducting turbulent flows [3]. It is well known that the turbulent 
flow involves motions of various scales. An important question is 
what effect is of the small scale turbulent flows on the dynamo 
actions.

Recently, Ponty and Plunian [4] investigated the dynamo action 
driven by a helical forcing corresponding to the Roberts flow, their 
numerical results showed that the turbulence has weak effect on 
the mean-flow dynamo onset, and beyond the onset of the large 
scale dynamo, the further increase of the magnetic Reynolds num-
ber can give rise to a small scale dynamo. Peyrot et al. [5] have 
studied the dynamo driven by a helical flow made of mean flow 
plus a fluctuating one, and found that the dynamo threshold de-
pends on the frequency and the strength of the fluctuating flow. 
In [6], an asymptotic method was developed for giving the growth 
rates and frequencies of the oscillating Ponomarenko dynamo in 
the highly conducting limit of large magnetic Reynolds number. 
Leprovost et al. [7] found that a modified Bullard dynamo can be 
modeled by a nonlinear oscillator subject to a multiplicative noise. 
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Based on this model, they have investigated the bifurcation phe-
nomena of the modified Bullard dynamo. Priede et al. [8] showed 
that a Bullard-type disc dynamo can be explained by a paramet-
ric resonance mechanism when the disc rotation rate is subject to 
harmonic oscillations. Laval et al. [9] found that for the dynamo 
action driven by a time-dependent Taylor–Green force the addition 
of the small scale noise to the mean velocity field can significantly 
increase the critical magnetic Reynolds number. Pétrélis and Fauve 
[10] found that the fluctuations of the phase of a cellular flow al-
ways impede the dynamo process. Bayliss et al. [11] performed a 
numerical simulation of a mechanically forced turbulent flow, and 
found that when the turbulence becomes strong, the dynamo ac-
tion driven by the large scale motion is suppressed. Gissinger [12]
numerically investigated the Taylor–Couette dynamo, and showed 
that the small scale turbulent flow tends to increase the critical 
magnetic Reynolds number.

It is well known that the numerical simulation becomes a pow-
erful tool for investigating the hydromagnetic dynamo actions. 
Especially for the geodynamo the numerical simulations have re-
vealed many features of the geomagnetic fields, such as the axial 
dipole structure and geomagnetic reversals [13–16]. However, di-
rect numerical simulations are not able to reach the realistic pa-
rameter regime with the power of today’s supercomputers [16]. 
Therefore, laboratory dynamo experiment is another option of ex-
ploring the geodynamo, although it is also not possible to fulfill all 
of the dimensionless numbers in laboratory.
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In the past decade, three liquid sodium dynamo experiments in 
Riga, Karlsruhe, and Cadarache [17–19] have successfully demon-
strated dynamo actions. However, in the Riga and Karlsruhe dy-
namo experiments, the laminar flows play the dominant role and 
suffer many constraints, which are different from the natural dy-
namos, such as the geodynamo. Although in the VKS experiment 
carried out in Cadarache (France) the fully turbulent flow is used 
to drive the dynamo action, the generated magnetic field is a pure 
toroidal magnetic field [20], and the dynamo is successful only 
when one of the impellers driving the flow is made of the soft-
iron [21]. Furthermore, the liquid metal is usually used as the 
working fluid in the current dynamo experiments. Unfortunately, 
it is still lack of the reliable measurement technique for measuring 
the velocity field of the liquid metal flow.

In order to avoid touching the thorny turbulent flow which is 
still one of the unsolved problems in classical physics, Tilgner [22]
used a 2D periodic flow comprising of periodic arrays of helical 
eddies with various scales to approximately model the turbulent 
flow, and found that the small scale eddies have a detrimental 
effect on the dynamo action driven by the large scale eddies, ex-
cept in some appropriate geometry, the small scale eddies can be 
more efficient for driving a dynamo action than the large scale 
eddies. In the present work, the integral equation approach is em-
ployed to investigate the dynamo actions driven by some multi-
scale Beltrami-like flows in a cylindrical vessel. The main focus is 
on the effect of small scale motions on the dynamos.

2. Integral equation approach

Consider the dynamo action to be driven by the flow of an 
electrically conducting fluid with the electrical conductivity σ and 
magnetic permeability μ. The fluid occupies the region D. Outside 
D is the insulating region denoted as D ′ which extends to infinity. 
The magnetic field B satisfies the following induction equation:

∂B

∂t
= ∇ × (u × B) + 1

μσ
�B (1)

where u is the velocity field. t the time, ∇ the gradient operator, 
� the Laplace operator. Furthermore, the magnetic field satisfies 
the following conditions:

∇ · B = 0 (2)

B = O (r−3), as r = |r| → ∞ (3)

Equations (1)–(3) describe the induction process in terms of the 
partial differential equations.

In recent years, we have developed an integral equation ap-
proach to simulating dynamo actions [20,23–28]. This approach 
has been examined by the Riga, Karlsruhe, and VKS experiments 
[20,23,24,29]. In this approach, the governing equations of the in-
duction process in terms of the partial differential equations are 
firstly changed to the following integral equations [24,25]:

B = μσ

4π

[∫
D

(u × B) × (r − r′)
|r − r′|3 dv − ∂

∂t

∫
D

A × (r − r′)
|r − r′|3 dv

−
∫
S

φn × r − s′

|r − s′|ds

]
(4)

1

2
φ = 1

4π

[∫
D

(u × B) · (r − r′)
|r − r′|3 dv − ∂

∂t

∫
D

A · (r − r′)
|r − r′|3 dv

−
∫
S

φn · r − s′

|r − s′|3 ds

]
(5)

A = 1

4π

[∫
D

B × (r − r′)
|r − r′|3 dv +

∫
S

n × B

|r − s|ds

]
(6)

where A and φ are the magnetic vector potential and electrical 
potential, respectively.

For the velocity field, we consider the Beltrami-like flows in a 
finite cylinder with radius R and height H = 2h. In the following, 
the spatial variables are normalized by the radius R , and we set 
h/R = 1.0. In dynamo theory, there is a particular interest in such 
flows for they are helicity maximizing. Therefore, they are likely to 
have small critical Reynolds number. We use the notation s±

mtn to 
characterize flows with m poloidal vortices and n toroidal vortices. 
The sign ± indicates that the poloidal flow in the equatorial plane 
is directed inward (+) or outward (-), respectively. These flows are 
expressed in the cylindrical coordinate system [ρ, ϕ, z] as follows:

uρ = c1 J1(γρ) cos(mπ(z + h)/(2h)), (7)

uϕ = 2 J1(γρ) sin(nπ(z + h)/(2h)), (8)

uz = −c1 c2 γ /π J0(γρ) sin(mπ(z + h)/(2h)), (9)

where γ = 3.8317 is the first root of the Bessel function J1, 
c1 = 1 for all s+

mtn flows, c1 = −1 for all s−
mtn flows, c2 = 2h/m, 

z ∈ [−h, h]. In the following, we shall take the s±
1 t1 or s±

2 t2 as the 
large scale flow and the s+

mtm with larger m as the small scale 
flows. Thus the multiscale Beltrami-like flow to be considered is 
written as

uρ = c1 J1(γρ) cos(kπ(z + h)/(2h))

+ f d1 J1(γρ) cos(mπ(z + h)/(2h)), (10)

uϕ = 2 J1(γρ) sin(kπ(z + h)/(2h))

+ 2 f J1(γρ) sin(nπ(z + h)/(2h)), (11)

uz = −c1 c2 γ /π J0(γρ) sin(kπ(z + h)/(2h))

− f d1 d2 γ /π J0(γρ) sin(mπ(z + h)/(2h)), (12)

where k = 1 or k = 2, m > 1 for k = 1 or m > 2 for k = 2, f is 
the magnitude of the small scale motion, d1 = 1 for all s+

mtn flows, 
d1 = −1 for all s−

mtn flows, d2 = 2h/m, z ∈ [−h, h]. It is easy to 
show that the above velocity field is divergence free. Note that the 
length scale of the small scale flow is inversely proportional to m
appearing in the above express of the velocity field. Therefore, we 
call the Beltrami-like flow with the larger m as the small scale 
flow. In some sense, this multiscale Beltrami-like flow reflects the 
feature of turbulent flow which also comprises the large scale and 
small scale flows. Based on the velocity field under consideration, 
the magnetic Reynolds number is defined as

Rm = μσ R
√

2E, E =
∫
D

0.5(v2
ρ + v2

ϕ + v2
z )dV (13)

Since the multiscale Beltrami-like flows under consideration are 
steady, the magnetic field can be expressed as B(r)exp(λt) where 
the real part of λ is the growth rate of the magnetic field, its imag-
inary part is the frequency. Therefore, Eqs. (4)–(6) are rewritten as 
follows:

B = μσ

4π

[∫
D

(u × B) × (r − r′)
|r − r′|3 dv − λ

∫
D

A × (r − r′)
|r − r′|3 dv

−
∫
S

φn × r − s′

|r − s′|ds

]
(14)
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