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We theoretically propose a feasible scheme to perform quantum computing in decoherence-free
subspaces (DFSs) with Cooper-pair box (CPB) qubits arrayed in a circuit QED architecture. Based on the
cavity-bus assisted interaction, the selective and controllable interqubit couplings occur only by adjusting
the individual gate pulses, by which we obtain the scalable DFS-encoded universal quantum gates to
resist certain collective noises. Further analysis shows the protocol may implement the scalable fault-
tolerant quantum computing with current experimental means.
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1. Introduction

Due to potential advantages such as convenient control, flex-
ible design and accessible scalability, superconducting Josephson
qubits have been identified as promising candidates for quan-
tum information processing [1–3]. As elementary superconducting
qubits, Cooper pair box (CPB) systems are insensitive to the de-
phasing effects caused by the first-order charge noise, and then
Vion et al. experimentally obtained a high quality factor of quan-
tum coherence Q ϕ [4]. Recently, circuit quantum electrodynamics
(QED) emerged in superconducting nanocircuits further inspired
the rapid development of quantum information science [5–9]. This
is mainly because transmission line resonator in the circuit QED
can effectively generate quantized cavity field, which gives rise to
the stronger couplings between the quantized field and the artifi-
cial atoms in contrast with the conventional cavity QED [10–12].

In the field of superconducting quantum computing, two cru-
cial issues have attracted considerable attention. One is how to
get the fault-tolerant quantum computing. As is well known, solid-
state circuits easily interact with the environmental noises, which
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impair greatly the capability of the qubits to process quantum in-
formation. Many valuable strategies to fight against decoherence
effects have been put forward, such as geometric quantum compu-
tation [13,14], optimal control approach [15,16], topologically pro-
tected qubits [17,18]. Particularly, decoherence-free subspace (DFS)
encoding as quantum error avoiding way is an interesting treat-
ment [19–25]. Another issue is how to scale up to many qubits.
To achieve this goal, some theoretical proposals and experimen-
tal attempts have been investigated, in which cavity-bus assisted
couplings open the novel opportunities to address the spatially re-
mote qubits [26–32]. However, towards physically implementing a
practical quantum computer, one should effectively combine the
above two aspects to realize the fault-tolerant quantum operations
on multiqubit systems.

Motivated by performing the scalable fault-tolerant quantum
computing, in this Letter we propose a theoretical scheme to re-
alize the quantum computing in DFSs with CPB qubits. Many CPB
systems acting as effective three-level atoms (TLAs) are arrayed in
a circuit QED that plays the role of quantum data bus. Under the ir-
radiation from gate pulses, the controllable couplings between any
pair of selected qubits dispersively coupled to cavity-bus can be
achieved via Raman transitions. Based on the circuit QED-assisted
interqubit couplings, we implement the universal gate operations
on the DFS-encoded logic qubits to eliminate some kinds of col-
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lective noises, as well as obtain the scalable quantum gates in the
DFSs. The scheme provides the possibility to obtain the scalable
fault-tolerant quantum computing with CPB qubits.

This Letter is organized as follows. In Section 2, we present CPB
circuit as an effective TLA. In Section 3, circuit QED-assisted cou-
pling between any pair of CPB qubits is studied. The DFS-encoded
logic gates are given in Section 4. In Section 5, we analyze the scal-
ability of quantum computing in the DFSs. Finally, discussions and
conclusions are drawn in Section 6.

2. CPB system as an effective three-level atom

The CPB circuit under consideration, as shown in Fig. 1, con-
sists of a superconducting box with extra Cooper-pairs n. The box
is coupled by two symmetric Josephson junctions each with ca-
pacitance C J and coupling energy E J to a segment of a supercon-
ducting ring. The characteristic parameters satisfy [3,4] � � Ec ∼
E J � kB T , where the energy gap � is large enough to suppress the
quasiparticle tunneling, Ec is the charging energy with the same
order of E J , and kB T represents the lower thermal excitation. To
achieve the adjustable Josephson coupling, an external magnetic
flux Φx threads the ring with a small inductance L. Through the
gate capacitance C g , a bias voltage V = Vd + Ṽa is applied to the
box, where the dc component Vd changes the static system levels
by inducing offset charges, and ac one Ṽa as a classical microwave
pulse aims at coupling the system levels.

Without the irradiation from classical microwave field, the
static system Hamiltonian is given by H0 = Ec(n − nd)

2 − Ē J cos θ ,
where the first term is the electrostatic energy, and the second
one is the Josephson coupling. Here the charging energy scale is
Ec = 2e2/Ct , with Ct = (C g + 2C J ) being the total capacitance of
the box, and nd = C g Vd/2e represents the gate charges induced by
dc voltage. The effective Josephson energy is Ē J = 2E J cos(ϕ/2),
where ϕ = 2πΦt/Φ0 characterizes the total phase difference, Φt =
Φx + L Is is the total flux, with L Is being the induced flux by super-
current Is , and Φ0 = h/2e stands for the flux quantum. The average
phase difference θ of the two junctions is conjugate to the extra
number n, this yields the relation of [θ,n] = i. Therefore, within
the Cooper-pair state representation {|n〉, |n +1〉}, the static Hamil-
tonian can be written as [33,34]

H0 =
∑

n

[
Ec(n − nd)

2|n〉〈n| − Ē J

2

(|n〉〈n + 1| + h.c.
)]

. (1)

In terms of Eq. (1), we have chosen the appropriate parameters
and numerically calculated the first four levels versus gate charge
nd (see Fig. 2). At bias point nd = 0.5, we denote the three lower
levels by |s j〉, which are the superpositions of many Cooper-pair
states, |s j〉 = ∑

n c jn|n〉, with c jn being superposition coefficients,
j = 1,2 and 3. The result demonstrates that the third level |s3〉 is
well separated from the fourth one, and then the CPB system can
be considered as an artificial three-level atom (TLA) effectively. The
two lowest levels |s1〉 and |s2〉 compose qubit eigenbasis physically,
and |s3〉 is the ancillary state, respectively.

Note that the reasons for choosing dc bias at the magic point
(nd = 0.5) are as follows. Since the qubit eigenbasis at magic point
is decoupled from the first-order charge noise, we should keep
the advantage to combat the dephasing effects as much as pos-
sible. On the other hand, the selection rules determined by the
parity symmetry of energy levels [8,35] do not impede the desired
transitions induced by the external fields. As will be discussed be-
low, the quantized cavity field causes the coupling |s1〉 ↔ |s3〉, and
the transition |s2〉 ↔ |s3〉 can be realized via classical microwave
pulse.

Fig. 1. Schematic diagram of the considered CPB circuit.

Fig. 2. The first four levels of the CPB system as a function of static gate charges
nd for the fixed Ē J = 2.5Ec , energies are given in units of Ec (= 14.0 GHz). At bias
point nd = 0.5, the CPB system containing the three lower levels |s1〉, |s2〉 and |s3〉
forms a TLA.

Fig. 3. Schematic representation of many CPB circuits arrayed in a circuit QED setup.

3. Circuit QED-assisted interqubit couplings

As schematically shown in Fig. 3, many CPB circuits are arrayed
in a high-Q circuit QED architecture, in which the strip-line res-
onator generates single-mode cavity field ωr [25,29,30,36]. The dis-
tance between the line connected with circuits and the center line
is d, and Lr denotes the geometric length of the one-dimensional
transmission line resonator (along the x direction). As a quantum
data bus, circuit QED interacts with each TLA simultaneously. For a
standing-wave cavity field, appropriate boundary condition of the
coplanar line resonator makes the electric field zero at the antin-
odes. Hence the maximal magnetic coupling strengths between the
CPB systems and the cavity mode can be achieved when systems
are situated at the antinodes of the magnetic field. Since the linear
dimension of each CPB is much smaller than the wavelength [37],
we can consider CPB circuits that are located at the antinodes ap-
proximately.

The Hamiltonian of the single-mode cavity field is described by
Hr = h̄ωr(a†a + 1/2), where a†(a) is photon creation (annihilation)
operator. The kth circuit is coupled inductively to the cavity field,
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