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The problem of N particles interacting through pairwise central forces is notoriously intractable for 
N ≥ 3. Some remarkable specific cases have been solved in one dimension. Here we show that the 
guiding center approximation—valid for charges moving in two dimensions in the limit of large constant 
magnetic fields—simplifies the three-body problem for an arbitrary interparticle interaction invariant 
under rotations and translations, making it solvable by quadratures. A spinorial representation for the 
system is introduced, which allows a visualization of its phase space as the corresponding Bloch sphere. 
Finally, a discussion of the quantization of the problem is presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is only in a few select cases that the N-body problem, with 
N ≥ 3, is known to be integrable. In arbitrary dimensions, the best 
known example is that of N particles interacting through linear 
forces, first solved by Newton [1]. In one dimension, there are sev-
eral cases, such as that of N particles interacting through an r−2

potential. This was solved by Calogero [2] and Marchioro [3] for 
N = 3 (but see also [4] for earlier related results) and by Calogero 
[5] and Sutherland [6] for the case of the quantum system with 
arbitrary N and all interaction strengths equal; the correspond-
ing classical problem was solved by Moser [7]. While integrable 
N-body problems can also be found in two and three dimensions, 
these remarkable results generally involve somewhat peculiar fea-
tures, such as velocity-dependent forces, many-body interactions, 
or Hamiltonians that are not of the usual form of the sum of ki-
netic and potential energy. The reader will find an extensive treat-
ment and many references in [8] and more recent results in [9].

The aim of this letter is to present a general class of integrable 
systems of a rather different nature. On the one hand, they ad-
mit a broad class of interactions between the three particles: any 
force defined by a rotationally and translationally invariant poten-
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tial is allowed. This includes in particular the case in which the 
particles interact via arbitrary pairwise central potentials. On the 
other hand, they are explicitly limited to the case of three particles 
moving in two dimensions. The feature that makes the problem 
solvable is that the particles are charged with the same charge e
in the presence of a strong constant magnetic field B . The latter in-
duces a rapid circular motion of particle i of radius ri = mi vi/|eB|
and frequency ωc = |eB|/mi , where mi and vi , are the mass and 
speed of the particle respectively (we use c = 1 throughout). If the 
field is sufficiently strong, the ri become negligible relative to any 
other length-scales of the problem. In this limit, the dynamics can 
be described, as is well-known, by an effective Hamiltonian system 
describing the secular motion of the center of the circular motion. 
In this paper, we show that this Hamiltonian is integrable by virtue 
of the geometric symmetries of the interaction potential. In that 
sense, the result is elementary, but also quite general.

In Section 2 we describe in detail the system to be studied. 
We first describe the full Hamiltonian, which is not solvable, and 
proceed to sketch the reduction process to the so-called guiding 
center Hamiltonian. The reduction is described in greater detail 
in Appendix A. In Section 3 we show how the system can be 
solved and introduce an appropriate set of variables to visualize 
the motion. In Section 4 we discuss in somewhat greater detail 
the specific case in which the interaction potential is a power-law 
in the interparticle distance. In Section 5 we discuss the corre-
sponding quantum system, analyzing in somewhat greater detail 
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the Coulomb case. Finally, in Section 6, we present some conclu-
sions.

2. Description of the system

Let us turn to a detailed description of the system. Let �qi and 
�pi be the position and canonical momentum vectors of particle 
i = 1, 2, 3, with components qi,α and pi,α respectively (α = 1, 2), 
and suppose the exact Hamiltonian of the system is

H(p,q) =
3∑

i=1

1

2mi

[(
pi,1 − eB qi,2

)2 + p2
i,2

]
+ V

(�q1, �q2, �q3
)

+ K

2

3∑
i=1

|�qi |2, (1)

where the interaction has the symmetry

V
(�q1, �q2, �q3

) = V
(
R�q1 + �a,R�q2 + �a,R�q3 + �a)

(2)

for arbitrary translations �a and rotations R in the plane. A well-
known transformation, described in detail in Appendix A (see also 
[10,11]), leads to new sets of canonical variables: the kinemat-
ical momenta �πi = m�vi , and the so-called guiding centers �Ri =
�qi − ẑ × �πi/(eB), which have the following Poisson brackets

{πi,α,πi,β} = εαβδi jeB (3a)

{Ri,α, R j,β} = −εαβδi j(eB)−1 (3b)

{πi,α, R j,β} = 0 (3c)

where εαβ is the antisymmetric tensor in two dimensions with 
ε12 = 1. As |B| becomes large, the cyclotron radii ri = | �πi |/|eB| be-
come far smaller than the scale at which the potential varies, and 
the �πi and �Ri decouple. The guiding center motion is then well 
described by the Hamiltonian

Hgc(x, y) = V [(x1, y1), (x2, y2), (x3, y3)] + �(|x|2 + |y|2)
2

, (4)

where � is K multiplied by an appropriate constant and the vec-
tors x = (x1, x2, x3) and y = (y1, y2, y3) are the x and y compo-
nents of the guiding centers in units chosen so as to render them 
canonically conjugate:

{xi, y j} = δi, j, {xi, x j} = {yi, y j} = 0. (5)

In words, we can thus say that, in the large field limit, the full 
Hamiltonian (1) reduces to its interaction term, the effect of the 
magnetic field being to make the x and y coordinates of the sys-
tem canonically conjugate.

3. Exact solvability of the reduced Hamiltonian

From the Poisson brackets (4), it is readily seen that

T y =
3∑

i=1

xi, Tx =
3∑

i=1

yi, J = 1

2

3∑
i=1

(
x2

i + y2
i

)
, (6)

generate translations in y, translations in x, and rotations about 
the origin, all of which are symmetries of the interaction poten-
tial. Moreover, the harmonic external potential is proportional to J , 
which has vanishing Poisson bracket with the scalar T 2

x + T 2
y . We 

thus find two independent integrals of the motion in involution, 
which for later convenience, can be traded for functions represent-
ing the orbital and spin angular momenta

L = 1

6

(
T 2

x + T 2
y

)
, S = J − L . (7)

Fig. 1. Poincaré section of a four-particle system interacting via a 1/r2 potential. The 
total energy E = 1 and angular momentum J = 5; the Poincaré section is defined 
as those configurations in which the longest side of the triangle has squared length 
7.8999396. The longest side is then defined to connect particles 3 and 4. ρi j is then 
defined to be the squared length between particles i and j. We notice a coexistence 
of smooth behavior (tori) with chaos.

The names total, orbital and spin angular momentum for J , L and 
S respectively are justified by the fact that these generate the cor-
responding types of rotations of the system. Since L, S and the 
Hamiltonian (4) are three integrals in involution, we conclude that 
the system is integrable.

We may thus set L and S to constant values and define coor-
dinates describing the shape of the triangle formed by the three 
particles: these coordinates must then commute with S , since S
generates global rotations of the triangle. Expressing the Hamilto-
nian in these coordinates leads to a problem in a two-dimensional 
phase space; that is, a one-dimensional problem, which can be 
straightforwardly solved by quadratures. Since the Hamiltonian 
only depends on the shape variables and on S , which is constant, 
one sees that the rotational motion only depends on the shape 
variables, and therefore can also be obtained by quadratures.

A remark concerning the symmetries of the Hamiltonian is in 
order: if the potential is not only symmetric under rotations, but 
also under some reflection, say under the transformation which 
changes the sign of all yi but leaves the xi invariant, then a form 
of time-reversal invariance is recovered, though it was, of course, 
broken in the original Hamiltonian. This occurs because, in the 
reduced system, such a reflection corresponds to an anticanonical
involution, which plays the same role as time reversal. More con-
cretely, this can be seen in the equations of motion, where such 
a reflection corresponds to changing the sign of t . Note that this 
happens for example, whenever the potential arises from two-body 
interactions.

Finally, the following question may, at this point, have occurred 
to the reader: is it possible that, for some choice of interaction 
potential, the integrability may hold for a larger number of parti-
cles? Two pieces of evidence make this unlikely: first we present a 
Poincaré section for 4 particles interacting via a 1/r2 potential (see 
Fig. 1). A chaotic region is readily apparent. A similar result was 
observed as well in the case of a 1/r interaction.

From an analytic viewpoint, the following argument serves to 
make the possibility of the four-particle system’s being integrable 
rather unlikely. In the three-particle system, for every power law 
potential except the harmonic case, we have three stable and three 
unstable equilibria on the equator. The three unstable equilibria 
are, as usual, connected by separatrices. That is, the stable and 
unstable manifolds arising from these unstable fixed points join 
smoothly along the separatrix. However, as is well-known, see for 
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