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We apply the Law of Total Probability to the construction of scale-invariant probability distribution 
functions (pdf’s), and require that probability measures be dimensionless and unitless under a continuous 
change of scales. If the scale-change distribution function is scale invariant then the constructed 
distribution will also be scale invariant. Repeated application of this construction on an arbitrary 
set of (normalizable) pdf’s results again in scale-invariant distributions. The invariant function of this 
procedure is given uniquely by the reciprocal distribution, suggesting a kind of universality. We separately 
demonstrate that the reciprocal distribution results uniquely from requiring maximum entropy for size-
class distributions with uniform bin sizes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1881 [1] the astronomer and mathematician Simon New-
comb observed that the front pages of tables of logarithms were 
more worn than later pages. In other words mantissas correspond-
ing to quantities that had a smaller first digit were more common 
than for quantities with a larger first digit. He argued that the 
distribution of “typical” mantissas was therefore logarithmic. The 
physicist Frank Benford [2] rediscovered this in 1938 and provided 
more detail, for which his name is now associated with this phe-
nomenon.

By now it is well documented that the frequency of first digits 
D in the values of quantities randomly drawn from an “arbitrary” 
sample follows Benford’s Law of Significant Digits, namely,

Bb(D) = ln(1 + D) − ln(D)

ln(b)
=

1+D∫
D

dx

x · ln(b)
, (1)

where b is the arbitrary base for the logarithms and is commonly 
taken to be 10. We note that the probability of first digit 1 for 
base 10 is log10(2) ∼= .30, far exceeding that for a uniform dis-
tribution of digits. The rightmost expression in Eqn. (1) expresses 
Newcomb’s and Benford’s logarithmic distribution as the cumula-
tive distribution function (cdf) based on the reciprocal probability 
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distribution function (pdf), which has been normalized to 1. The 
pdf that underlies Benford’s Law is therefore the reciprocal distri-
bution, r(x) ≡ c/x, with normalization constant c = 1/ ln b when 
the random variable x ranges between 1/b and 1. We note that 
Eqn. (1) is base invariant (i.e., invariant under a common change 
in the base of the various logarithms) and that the reciprocal pdf 
is scale invariant (a function f (x) is said to be scale invariant if 
f (λx) = λp · f (x) for any p ∈ C). In this work we will concentrate 
on the emergence of the reciprocal distribution under a variety 
of conditions. The invariant (or fixed-point) function of an itera-
tive procedure applied to distribution functions that are invariant 
under a continuous change of scales will be shown to be the re-
ciprocal distribution. Additionally, requiring maximum entropy for 
size-class distributions with uniformly distributed bin sizes leads 
to the same function.

Very relevant to the discussion above is T.P. Hill’s proof in 
1995 [3–6] that random samples chosen from random probability 
distributions are collectively described by the reciprocal distribu-
tion, which is the pdf for the logarithmic or Benford distribution. 
In Hill’s words: “If distributions are selected at random (in any 
“unbiased” way) and random samples are then taken from each of 
these distributions the significant digits of the combined sample 
will converge to the logarithmic (Benford) distribution.” Because of 
this, the latter has been appropriately characterized as “the dis-
tribution of distributions,” as Hill’s theorem is in some sense the 
obverse (counterpart) of the Central Limit Theorem for probability
distributions with large numbers of samples.

Benford’s Law has been found to hold in an extraordinary num-
ber and variety of phenomena in areas as diverse as physics [7–12], 
genomics [13], engineering [14] and among many others, forensic 
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accounting [15]. Recently the number of examples where it applies 
has been expanding rather rapidly.

In the 1960’s the need for understanding the constraints im-
posed in computation by finite word length and its impact on 
round-off errors were behind the interest of many, including 
R. Hamming [16,17], in Benford’s law.

Importantly, Hamming argued that repeated application of any 
of the four basic arithmetic operations (addition, subtraction, mul-
tiplication and division) to numbers leads to results whose distri-
bution of leading floating-point digits approaches the logarithmic 
(Benford) distribution. Hamming further argued that if any one 
arithmetic operation involves a quantity already distributed ac-
cording to the reciprocal distribution, r(x), then the result of this 
and all subsequent operations will result in quantities whose pdf 
for the leading floating-point digits is the reciprocal distribution. 
Hamming called this property the “persistence of the reciprocal 
distribution” although a better word might be contagiousness, 
since contact with the reciprocal distribution at any point in a cal-
culational chain modifies the remaining chain irrevocably.

In this paper we use elementary methods to explore the con-
nection between Benford’s law, Hill’s theorem and the “conta-
giousness” property of the reciprocal distribution. We will demon-
strate this by constructing a simple but comprehensive class of 
probability distributions that depends on a single random vari-
able that is dimensionless and unitless under a continuous change 
of scales. This class depends on an underlying pdf that is arbi-
trary, and which can be sampled in a manner consistent with 
Hill’s Theorem. We further generalize this into an iterative pro-
cedure whose invariant functions are shown uniquely to be the 
reciprocal distribution, and which demonstrate Hamming’s “conta-
giousness”. Uniqueness obtains because the arbitrary (or “random” 
in this sense) underlying pdf eliminates any particular solutions in 
the invariant functions and leaves only the general solution. Our 
procedure generalizes the work of Hamming [16], and to the best 
of our knowledge is both new and useful. We show alternatively 
by invoking maximum entropy for a size-class distribution func-
tion that the reciprocal distribution again obtains as the unique 
solution. We conclude by speculating on the universality and ap-
plications of these results, with particular emphasis on minimizing 
errors in computations of various types.

2. Results

2.1. Invariance under changes in units and the law of total probability

In most scientific applications a stochastic variable x is assigned 
to the random values of some physical quantity. This quantity car-
ries either physical dimensions (e.g., length or volume) or units 
(such as the number of base pairs in a genome). However, because 
it refers to probabilities, the probability measure F (x) ·dx that char-
acterizes x must be dimensionless and unitless.

Hence, in order to remove units or dimensions from the mea-
sure it is necessary to introduce a parameter that results both in a 
dimensionless and unitless stochastic variable, as well as in a bona 
fide probability measure. Calling this parameter σ , for a specific 
value of σ we can rescale the physical variable x into a dimension-
less and unitless random variable by just replacing x with z = x/σ . 
(We also assume for simplicity that x is positive semi-definite.) 
Then we can always introduce a normalizable function g such that

F (x) = 1

σ
g
( x

σ

)
, (2)

and that has the correct properties expected from a probability 
measure. In other words, we can use a parameter σ to remove 
units or dimensions from the probability measure.

Familiar examples of distributions of the type g are the uniform 
distribution, gu(z) = θ(1 − z), the Gaussian distribution, gG(z) =

2√
π

exp (−z2), and the exponential distribution, ge(z) = exp (−z), 
all of which satisfy the normalization condition: 

∫ ∞
0 dz g(z) = 1. 

Heaviside step functions can be used for those cases where g(z) is 
only non-vanishing in an interval, such as z = [a, b], as was done 
above for the uniform distribution.

But the units chosen to measure x are, of course, arbitrary. 
For example, if x is a length, the units could be meter, millime-
ter, Angstrom, or even fathom, furlong, league, etc. In other words, 
the choice of units is itself arbitrary [18] and we can think of σ
as a random variable with a distribution function h(σ ). Thus the 
problem we must study involves the combination of two stochas-
tic variables. We can conveniently remove the scale and avoid the 
issue of units by using the Law of Total Probability [19] to combine 
the distribution g with a distribution of scale choices to produce a 
distribution G(x):

G(x) =
∞∫

0

dσ
g(x |σ)

σ
h(σ ) , (3)

where now G(x) and h(σ ) are interpreted as the marginal proba-
bilities for events x and σ , and g(x | σ) represents the conditional 
probability for x given σ . This well known law captures the intu-
itively clear statement that the probability that event x occurs is 
determined by summing the product of the probabilities for any of 
its antecedents σ to happen, times the conditional probability that 
x happens, given that σ has already occurred. Convergence of the 
integral for small values of σ is not a problem for x �= 0 if g(z)
vanishes sufficiently rapidly for large z. Normalizability of g is suf-
ficient for our purposes. The probability distribution in Eqn. (3) is 
fairly general and will be our template for studying the conditions 
underlying the emergence of the reciprocal distribution.

2.2. The Law of Total Probability and its recursive application

Let us consider a g(x|σ) that is invariant under changes in di-
mensions or units. That is, let us assume that

g(x|σ) ≡ g (x/σ ) , (4)

with a concomitant interpretation for g(x/σ ) in the terms de-
scribed in the preceding paragraph (N.B. the difference between “|” 
and “/”). Changing the integration variable to z ≡ x/σ in Eqn. (4)
leads to the convenient form

G(x) =
∞∫

0

dz

z
g(z)h(x/z) . (5)

It is important to note a property of Eqn. (5) that is a con-
sequence of its structure: the function G(x) has an exceptional 
form if h(σ ) is a scale-invariant (and power-law) function. A scale-
invariant function h(x/z) must be a power of its argument, or 
h(x/z) ∝ (x/z)−s for a power-law. Ignoring the (for now) irrelevant 
proportionality constant, we then have

G(x) = 1

xs

∞∫
0

dz zs−1 g(z) (6)

for h(σ ) = 1/σ s . We note that the integral 
∫ ∞

0 dz zs−1 g(z) =
Ms(g) is a constant and the Mellin transform [20] of the func-
tion g(z). This allows one to rewrite Eqn. (6) in the more compact 
form

G(x) = 1

xs
Ms(g) . (7)
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