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1. Introduction

In this paper we uncover the fact that the celebrated Fokker-
Planck (FP) equation [1]
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exhibits a deep connection with a hypergeometric differential
equation. In equation (1.1), F is the distribution function, K(x) is
the drift coefficient and Q is the diffusion coefficient (a positive
quantity) [1]. The second term on the r.h.s. describes the effects
of the fluctuating forces (diffusion term). Without it, (1.1) would
describe deterministic motion (overdamped motion of a particle
under the force K(x)). For the time being, we restrict ourselves to
the case K = constant. A similar hypergeometric derivation applies
to a nonlinear generalization of equation (1.1), in the spirit of the
one discussed by Plastino and Plastino [2].

Note that Eq. (1.1) is not just the Fokker-Planck equation, but
also (up to appropriate scaling of F) encompasses all advection—
diffusion equations (sometimes called convection-diffusion or
advection-dispersion equations), with K(x) = drift velocity and
Q /2 = diffusion coefficient (see, for instance, [3] and references
therein). The discussion given below is therefore more general in
its application.

This papers continues a line of research initiated by uncover-
ing manifestations of hypergeometric equations in quantum equa-
tions [4].
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2. Deep connection between hypergeometric and Fokker-Planck
equations

The ordinary hypergeometric function F12(a, b; c; z) is a special
function represented by the hypergeometric series, that includes
many other special functions as specific or limiting cases. It is
a solution of a second-order linear ordinary differential equation
(ODE). Many second-order linear ODEs can be transformed into
this equation. Generalized hypergeometric functions include the
confluent hypergeometric function (also called Kummer’s function)
as a special case, which in turn has many particular special func-
tions as special instances, such as elementary functions, Bessel
functions, and the classical orthogonal polynomials. In particular,
Kummer’s function reads [4]
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with ap, b, the Pochhammer symbols:

apg=1,a,=a@+1)(@+2)..(a+n—1); same for b. (2.2)

The confluent hypergeometric (or Kummer's) function satisfies the
second-order differential equation [4]:

z¢"(a,b,2) + (b —2)¢'(a,b,z) —a¢(a,b,z) =0, (2.3)

and has accordingly two linearly independent solutions. One of
them will be connected to the Fokker-Planck equation.
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Eq. (2.3), for a = b, adopts the appearance

z¢"(a,a,z) + (a —2)¢'(a,a,z) —ag(a,a,z) =0, (2.4)
where primes indicate differentiation with respect to z. Accord-
ingly [see (2.1)],

¢(a,a,z)=e". (2.5)

Now, if we write z in the fashion

z=—(At +x/1), (2.6)

we have for the function ¢

P [a, a,— (M n ;)] — () 2.7)

where we express the new quantity A in terms of an equation in-
volving the two ones K and Q entering Eq. (1.1)

A4+ Ka+ % =0. (2.8)

This equation for A exhibits three solutions, one of them real and
the other two complex. Since F in (1.1) is a normalized density
function, the complex solutions are of no use to us.

Given that ¢ is such that
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Eq. (2.4) can be recast as
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Since ¢’ = ¢, (2.10) gets simplified to
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According to (2.8), Eq. (2.11) becomes
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In addition, since ¢ verifies
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we are led to the following expression for (2.12)
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which is tantamount to
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i.e., Fokker-Planck’s equation for K independent of x. Note that, by
definition, (2.7) is a solution of (2.15).

3. Nonlinear Fokker-Planck equation [5]

Anomalous diffusion is exhibited in a variety of physical sys-
tems and is therefore the subject of much interest. It can be
observed, for example, in general systems such as plasma flow,
porous media, and surface growth, as well as in more specific
situations such as cetyltrimethylammonium bromide micelles dis-
solved in salted water and NMR relaxometry of liquids in porous
glasses [5]. The main characteristic of anomalous diffusion is the
fact that the mean squared displacement is not proportional to

time t but rather to some power of it. If the scaling is faster
than t, then the pertinent system is superdiffusive while, if it is
slower than ¢, it is subdiffusive. A nonlinear Fokker-Planck diffu-
sion equation has been proposed for those systems with correlated
anomalous diffusion, beginning with [2] and followed afterward by,
for instance, [6-9]. For an excellent overview, see [5].

For the ordinary hypergeometric function F12(a, b; c; z) we have
[10], using now three Pochhammer symbols,
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where the series terminates if either a or b is a non-zero integer.

A particularly important special case is

F(—m,b,b,—2)=(14+2)™. (3.2)

Eq. (3.1) verifies [10]
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This second-order equation has two independent solutions, and we
will give a physical meaning to just one of these solutions.
If 8=y, then F satisfies [11]

F(—a,y;y;—2) =(1+2)%. (3.4)
Focus attention now upon the function
1
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where A obeys (for K and Q both constants)
B+ Kr+ % =0. (3.6)

We start now a rather lengthy discussion in order to derive
Egs. (3.16) and (3.19) below. Recourse to (3.4) allows one to write

F[q%l,y;y;(l —q (u+§)]

1
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and then
2= - (a+ %) (3.8)

For B =y, F [cf. (3.3)] adopts the appearance
z0=2)F (e, y;v:2) + [y — (@ +y + DzIF (o, ¥; 73 2)
—aBF(a,y;y;z)=0. (3.9)

Since F verifies
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and, adequately simplifying,
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