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Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world 
effect is an important ingredient which should be taken into consideration in the complete description of 
real-world complex systems. In this letter, structural controllability of a class of local-world networks is 
investigated. Through extensive numerical simulations, firstly, effects of local world size M and network 
size N on structural controllability are examined. For local-world networks with sparse topological 
configuration, compared to network size, local-world size can induce stronger influence on controllability, 
however, for dense networks, controllability is greatly affected by network size and local-world effect 
can be neglected. Secondly, relationships between controllability and topological properties are analyzed. 
Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is 
discussed. These results can help to deepen the understanding of structural complexity and connectivity 
patterns of complex systems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The last two decades have witnessed the rapid development 
of complex networks in capturing different topological patterns 
of real-world complex systems, ranging from the communication 
networks (Internet, World Wide Web), biological systems (protein 
interaction networks, neutral networks), to traffic networks and so-
cial networks [1–7]. The significance of connectivity patterns of 
complex networks to their collective behaviors and functional per-
formance has been verified by fruitful research outcomes so far [8,
9]. Especially, since the ultimate proof of our understanding of 
natural or technological systems is reflected in our ability to con-
trol them, controlling a complex network to any desired state is 
one of the most challenging problems in science and engineering, 
which has aroused a wide attention from different aspects, includ-
ing pinning control [10,11], structural controllability [12,13], exact 
controllability [14], etc.

The concept of structural controllability, firstly proposed by Lin 
in Ref. [12], was extended to complex networks recently by Liu 
et al. [13]. According to minimum inputs theorem, they success-
fully implemented the maximum matching algorithm to estimate 
the minimum number of controllers and their locations to ensure 
the structural controllability of complex networks [15]. Stimulated 
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by their work, a lot of efforts have been devoted on structural role 
of complex networks on controllability as well as its extensions 
such as control centrality [16,17], control profile [18], control en-
ergy [19], controllability optimization [20,21], and so on.

Structural controllability of a network can also be greatly af-
fected by other important topological properties and dynamics 
occurring on networks. Clustering coefficient and the community 
structure are found to have no systematic effect while the sym-
metries of the underlying matching problem can produce linear, 
quadratic or no dependence on degree correlation coefficients, de-
pending on the nature of the underlying correlations [22]. Addi-
tionally, nodal dynamics may come as the focal issue to determine 
structural controllability of a network [23]. Moreover, Menichetti 
et al. [24] pointed out that the density of low in-degree and out-
degree nodes of a network determines the controllability. “Robust-
ness and fragility”, an important property of complex networks, 
has also been combined with the extensive studies of structural 
controllability [25–28]. Lately, the study on controllability has also 
been extended to multilayer networks [29].

Recently, a novel network model proposed by Li and Chen [30], 
which is called local-world evolving network model, has received a 
great deal of attention. In order to deeply understand the evolving 
mechanism of real-world complex systems, it is of great concern 
to take local-world effect, which is an important feature of many 
real-world systems, into account. By adjusting an important model 
parameter – local world size M , generated networks show a tran-
sition between exponential and scale-free networks with respect 
to the degree distribution p(k), which represents the probability 
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that a randomly selected node in a network has k connections. Af-
ter their work, massive research efforts are focused on local-world 
evolving networks. For example, the local-world effect has been 
extended to the construction of various network models, such as 
weighted networks [31–33], bipartite networks [34] and in partic-
ular hypernetworks [35]. Furthermore, other evolving mechanisms 
are also incorporated, including clustering [36], community [37,
38], hierarchical structures [39], etc. Moreover, since localization is 
an essential evolution characteristic of many real-world networks, 
many variants of local-world network models are proposed and 
employed to analyze the structure and function of real systems, 
such as world trade web [40], power grid [41], energy supply-
demand network [42] and so on. In addition, such local-world 
effect leads to various characteristics and collective behaviors on 
evolving networks, including error and attack tolerance [43], syn-
chronizability [44], epidemics [45], cascading failure caused by 
load redistribution [46], consensus of multi-agent systems [47], etc.

As mentioned above, structural controllability of local-world 
networks deserves sufficient discussion, which, however, has not 
been explored. In this letter, we first introduce as preliminary 
knowledge the local-world evolving network model, followed by a 
brief overview of basic concepts of structural controllability. Here, 
the structural controllability can be quantified through the num-
ber of driver nodes which is only determined by the connection 
topology of the network. Through extensive numerical simulations, 
effects of local-world size M and network size N on structural 
controllability are firstly examined, followed by the analysis of re-
lations between controllability and other topological properties. 
Lastly, structural controllability against random and targeted at-
tacks is investigated.

2. Models

2.1. Local-world evolving network model

The local-world evolving model [30] inherits two ingredients 
from Barabási–Albert (BA) model [7]: growth and preferential at-
tachment. However, the difference exists in the preferential attach-
ment mechanism: it involves local preferential attachment to cap-
ture the localization effect during the evolution of real networks. 
The iterative algorithm of this model is outlined as follows:

• Growth: Starting from a small number m0 of isolated nodes, 
at each time-step t , add a new node with m (m ≤ m0) edges 
connecting to the network.

• Local preferential attachment: Before connecting the new 
node to m existing nodes, randomly select M nodes referred to 
as the “local world”; then, add edges between the new node 
and m nodes in the local world, the linking probability be-
tween any node i in the local world and the new node is:

�local(i) = (
M

m0 + t
)(

ki∑
j∈local k j

). (1)

After T time steps, the algorithm results in a network with 
N = m0 + T nodes and E = mT edges. In BA model, preferential 
linking probability is �(i) = ki/

∑
j k j and the summation is valued 

over the whole network. While the linking probability is valued 
only within the local world of the new node (see Eq. (1)). Two 
special (limiting) cases exist. If M = m, the preferential attachment 
mechanism does not take effect and the model results in a net-
work with a degree distribution following an exponential form: 
p(k) ∼ e−k/m . On the other hand, if M ≥ m0 + T − 1, the model 
reduces to a BA model with p(k) ∼ k−γ and γ = 3. By varying the 
parameter M, network generated by this model represents transi-
tional behaviors between these two extremes.

2.2. Structural controllability of complex networks

Considering a static network (i.e., the edges and nodes are fixed 
without evolving/switching) associated with a linear time invariant 
(LTI) system,

ẋ = A′x(t) + Bu, (2)

where A′ ∈ R N×N denotes the transpose of the network adjacency 
matrix A, and N is the number of nodes in the network. As for 
A = {aij}, if there is an edge from node i to node j, aij = 1; 
otherwise aij = 0. x(t) = [x1(t), x2(t), . . . , xN (t)]′ ∈ R N denotes the 
state of a system of N nodes at time t . B ∈ R N×M denotes the 
input matrix which identifies the nodes controlled by an outside 
controller and M is the number of controllers on the network. 
For ∀bij ∈ B , bij 	= 0 if there is a controller j placed on node i, 
or bij = 0. u(t) = [u1(t), u2(t), . . . , uM(t)]′ ∈ R M denotes the in-
put signals from the external controllers on the network. Based on 
Kalman’s state controllability condition, the LTI system (2) is said 
to be state controllable if and only if the controllability matrix

[(A′)N−1 B, (A′)N−2 B, . . . , (A′)B, B] (3)

has full rank.
The maximum matching algorithm [15] is implemented to es-

timate the minimum number of controllers and their locations to 
ensure the structural controllability of complex networks according 
to minimum inputs theorem [13]. The minimum number of inputs 
to fully control a network, denoted as NI , is equal to the minimum 
number of driver nodes, denoted as ND. ND = 1 if there is a per-
fect matching in a network, and any node can be the driven node. 
Otherwise, ND is equal to the number of unmatched nodes to a 
maximum matching and these unmatched nodes are driven nodes. 
That is,

NI = ND = max(N − |m∗|,1), (4)

where |m∗| denotes the number of matched nodes to a maximum 
matching.

Realizing that ND depends only on network topology, the im-
pact of a particular topology on the network controllability can be 
represented by a single quantity nD, denoted to be

nD = ND/N. (5)

Obviously, 0 < nD ≤ 1.0. A higher value of nD implies that more 
driver nodes are needed in order to fully control the whole system. 
Thus, the smaller the value nD, the easier the networked system 
can be controlled, and vice versa.

3. Structural controllability of local-world networks

In this section, we focus on the relationship between the struc-
tural controllability and the topology of local-world networks.

3.1. Effects of local world size M and network size N

Having reduced the problem of controllability to examining the 
value nD, we now consider the impacts of local world size M and 
network size N on structural controllability of local-world net-
works.

For clarity, we take m0 = m in the construction of the local-
world evolving networks. Fig. 1 shows the dependencies of nD on 
local world size M with different m. All the networks are with size 
N = 2000. And each data point is the average of 10 independent 
runs.

For sparse networks, i.e., m = 1 or m = 2, for smaller M , as 
M increases, nD is observed to increase. However, nD becomes 
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