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In general, classical measurement statistics of a quantum measurement is disturbed by performing
an additional incompatible quantum measurement beforehand. Using this observation, we introduce a
state-independent definition of disturbance by relating it to the distinguishability problem between two
classical statistical distributions - one resulting from a single quantum measurement and the other from
a succession of two quantum measurements. Interestingly, we find an error-disturbance trade-off relation
for any measurements in two-dimensional Hilbert space and for measurements with mutually unbiased
bases in any finite-dimensional Hilbert space. This relation shows that error should be reduced to zero
in order to minimize the sum of error and disturbance. We conjecture that a similar trade-off relation
with a slightly relaxed definition of error can be generalized to any measurements in an arbitrary finite-
dimensional Hilbert space.
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1. Introduction

The uncertainty principle has been regarded as a fundamental
principle in quantum mechanics. It asserts that we cannot get the
precise values of two physical observables in a quantum state, un-
less they are compatible. The well-known version of this principle
was formulated by Heisenberg in 1927, namely, [1]

AxAp >h/2. (1)
A more general form of it can be written as

(¥ I[A, Blly)|
ean®) = VI @)

where &(A) is the error with which the measurement of opera-
tor A is carried out, and n(B) is the disturbance on the following
measurement of operator B caused by the measurement of A. In
Eq. (1), Ax and Ap can be interpreted as error and disturbance
when A and B are position and momentum operators. Mathemat-
ically, Eq. (2) comes from the Robertson’s uncertainty relation [2]:

o (A)o(B) > IWI[A,ZB]W)I, 3)

where o (X) = \/(1[/|X2|11f) — (¥|X|y)? is the standard derivation
of an observable X in a quantum state |ir). Note that while Eq. (3),
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usually regarded as a rigorous version of Heisenberg’s uncertainty
principle [3-5], can be proven mathematically, the justification for
relation Eq. (2) is currently on hot debate because additional con-
ditions have been used in its derivation [6]. More importantly,
several experiments showed that Eq. (2) is violated [7-9]. Thus, the
trade-off relation that the higher the precision of measuring A, the
stronger the disturbance on measuring B cannot be well-captured
by Eq. (2).

Many important works in this area have been done, but the def-
initions of error and disturbance are still not settled [10]. Ozawa
used the noise-operator based definition and proposed a “univer-
sally valid error-disturbance relation” [11]:

e(A)n(B) +&e(A)o (B) + o (A)n(B) > HW[AZM- (4)
This uncertainty relation was later verified experimentally [7-9,
12-15] and inspired a lot of work on uncertainty relations [16-18],
but some shortcomings were also pointed out [19,20]. For exam-
ple, it seems to violate the proposed operational constraint that
the error and disturbance should be non-zero if the outcome dis-
tribution is deviated from what is expected according to the Born
rule [19].

Using distance between distributions is another way to quan-
tify measurement errors [21-24], Busch et al. proved the origi-
nal Heisenberg's error-disturbance relation in Eq. (2) by defining
the error and disturbance as figures of merit characteristic of the
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measuring devices [21,25], which generated a debate over different
approaches used in formalizing uncertainty relations [26,27].

In this paper, we introduce a straightforward definition of er-
ror and disturbance. The key observation is that given an arbitrary
quantum state, the measurement statistics of a measurement op-
eration on that state is unchanged if and only if we perform an
additional compatible measurement to the state beforehand. Thus,
we may define the disturbance of B (measurements of operator B)
due to A (measurements of operator A) as the distance between
the two probability distributions of the measurement outcomes
due to B and B o .A maximized over all possible input quantum
states. We introduce the definitions of error and disturbance in
Sec. 2 and report a few basic properties of these quantities in
Sec. 3. Then, in Sec. 4, we prove the error-disturbance trade-off
relation for the case of 2-dimensional Hilbert space. In particular,
we derive a sharp lower bound of the sum of error and distur-
bance. We also give the trade-off relation in d-dimensional Hilbert
space for a special but important case. Finally, we draw a few con-
clusions in Sec. 5.

2. Definitions and notations

Suppose one is given a density matrix o in a d-dimensional
Hilbert space with d > 2. Let A be the projective measurements of
operator A with rank-one projectors. (Unless otherwise stated, all
measurements in this paper are associated with rank-one projec-
tors. Note that our discussion can be easily extended to the case of
a general positive operator-valued measurement. We restrain from
doing so to avoid unnecessary notational and indexing complica-
tions.) The probability distribution obtained from applying A to p
is given by the vector

Pa(p) = (V) = (@il plap) . 5)

where |a;) (a;j| is the rank-one projector corresponding to the ith
measurement outcome. We now consider measuring o using an-
other projective measurement A’ before feeding the resultant state
to 5. We write the probability distribution of the measurement
outcomes of A" by P_4/(p0). More importantly, the probability dis-
tribution of the final measurement outcomes of B o A’ is given by
Ppoar(p) = Pp(p) where p’ =3 (aj| plaj) la;) {a;l with |a;) (gl
being the rank-one projector corresponding to the ith measure-
ment outcome of A’

In general, Pp, 4/ (p) is different from Pg(p) as measurements
change the state of a quantum system. We would like to know
how a change in measurement A’ affects the change of Py(p)
through their classical statistics of their measurement outcomes
only. With this motivation in mind, for any given metric D(-,-) of
an Euclidean space, we define the state-dependent error between
P 4(p) and P 4 (p), and the state-dependent disturbance between
Pg(p) and Pp(p’) as

gp(A, A)=D(P4(p), P a(p)) (6)
and
Np(A’, B)=D(Pg(p), Pr(p)), (7)

respectively. Here, the definition of 7,(A’, B) is known. Since our
goal is to study the maximum pointwise deviation in the distribu-
tion of measurement outcomes, we use the metric based on the
infinity norm, namely,

D(x,y) :miaX|Xi = yil. (8)

We now define the state-independent error and the state-
independent disturbance by

e(A A = mpax gp(A, A (9)

and

n(A/,B):mpax Np(A', B), (10)
where Eq. (10) measures the incompatibility of quantum measure-
ments A’ and B, shown in [24]. From now on, the terms “error”
and “disturbance” refer to the state-independent versions unless
otherwise stated. Note that these definitions meet the proposed
operational constraint [19] for (A, .A’) =0 if and only if A= A4
and n(A’, B) =0 if and only if A'=B

Finally, to obtain a trade-off relation between error and distur-
bance in one measurement, that is, to find out how much we need
to sacrifice on one to lower the other, just as what Heisenberg did,
we introduce the state-independent overall error

A(A, A, B) = max (ep(A, A) +1p (A, B)). (11)
Clearly, ¢ +7n > A.

3. Basic properties of the state-independent error and
disturbance

According to definitions in Sec. 2,

£ (A, A) = max [tr (p(la) (@il — |a}) (a}))] (12)

Np(A', B) = max|tr (p(Ibi) Z’ a’|b) ‘ aj) (@;D)|,

we have

e(AA) = max R (la;) (@i — laj) (aj]) (13)

and

nA', B) = max R(|by) (bil — Z ’(bila;{)‘z |ay) (@l ). (14)
!

Here, R(-) is the spectral radius of a matrix (the largest of absolute
values of the eigenvalues). Similarly, we have

A(A A, B) = max R(|a>< il —laj) (a}| &

) (b; |:F2|b laj,) |

Note that the maximum of &, can be attained by a pure state p;
and similarly for 7, and &, 4 1,.

|ak (ak|) (15)

Property 1 (Range). The error satisfies
(A A) <1 (16)

forany A, A, with equality if and only if (a}|a;) =
tion, the disturbance obeys

nA', B)<1-1/d; (17)
for any A, B, with equality if and only if there is an i such that |b;) is
2

. That is to say, ‘(a}|b,->’ =1/d forall j.

0 for some i. In addi-

. , d
unbiased in ( la’) )j:1

Proof. The rank of the matrix |a;) (a;| — |aj) (a;| is at most 2. Thus,
the spectral radius of this matrix can be calculated easily as |a;)
and |aj) — (a;|a;) |a;) are orthogonal. Hence, Eq. (13) becomes

(A, A') = max\/1— |(@la;)|*. (18)

Consequently, £(A, A") <1 with equality holds when there exists
an i such that (aj|a;) = 0.
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