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In general, classical measurement statistics of a quantum measurement is disturbed by performing 
an additional incompatible quantum measurement beforehand. Using this observation, we introduce a 
state-independent definition of disturbance by relating it to the distinguishability problem between two 
classical statistical distributions – one resulting from a single quantum measurement and the other from 
a succession of two quantum measurements. Interestingly, we find an error-disturbance trade-off relation 
for any measurements in two-dimensional Hilbert space and for measurements with mutually unbiased 
bases in any finite-dimensional Hilbert space. This relation shows that error should be reduced to zero 
in order to minimize the sum of error and disturbance. We conjecture that a similar trade-off relation 
with a slightly relaxed definition of error can be generalized to any measurements in an arbitrary finite-
dimensional Hilbert space.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The uncertainty principle has been regarded as a fundamental 
principle in quantum mechanics. It asserts that we cannot get the 
precise values of two physical observables in a quantum state, un-
less they are compatible. The well-known version of this principle 
was formulated by Heisenberg in 1927, namely, [1]

�x�p ≥ h̄/2. (1)

A more general form of it can be written as

ε(A)η(B) ≥ |〈ψ |[A, B]|ψ〉|
2

, (2)

where ε(A) is the error with which the measurement of opera-
tor A is carried out, and η(B) is the disturbance on the following 
measurement of operator B caused by the measurement of A. In 
Eq. (1), �x and �p can be interpreted as error and disturbance 
when A and B are position and momentum operators. Mathemat-
ically, Eq. (2) comes from the Robertson’s uncertainty relation [2]:

σ(A)σ (B) ≥ |〈ψ | [A, B] |ψ〉|
2

, (3)

where σ(X) =
√

〈ψ |X2|ψ〉 − 〈ψ |X |ψ〉2 is the standard derivation 
of an observable X in a quantum state |ψ〉. Note that while Eq. (3), 
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usually regarded as a rigorous version of Heisenberg’s uncertainty 
principle [3–5], can be proven mathematically, the justification for 
relation Eq. (2) is currently on hot debate because additional con-
ditions have been used in its derivation [6]. More importantly, 
several experiments showed that Eq. (2) is violated [7–9]. Thus, the 
trade-off relation that the higher the precision of measuring A, the 
stronger the disturbance on measuring B cannot be well-captured 
by Eq. (2).

Many important works in this area have been done, but the def-
initions of error and disturbance are still not settled [10]. Ozawa 
used the noise-operator based definition and proposed a “univer-
sally valid error-disturbance relation” [11]:

ε(A)η(B) + ε(A)σ (B) + σ(A)η(B) ≥ |〈ψ | [A, B] |ψ〉|
2

. (4)

This uncertainty relation was later verified experimentally [7–9,
12–15] and inspired a lot of work on uncertainty relations [16–18], 
but some shortcomings were also pointed out [19,20]. For exam-
ple, it seems to violate the proposed operational constraint that 
the error and disturbance should be non-zero if the outcome dis-
tribution is deviated from what is expected according to the Born 
rule [19].

Using distance between distributions is another way to quan-
tify measurement errors [21–24], Busch et al. proved the origi-
nal Heisenberg’s error-disturbance relation in Eq. (2) by defining 
the error and disturbance as figures of merit characteristic of the 

http://dx.doi.org/10.1016/j.physleta.2016.03.046
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.03.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:sjwu@nju.edu.cn
http://dx.doi.org/10.1016/j.physleta.2016.03.046
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.03.046&domain=pdf


S.S. Zhou et al. / Physics Letters A 380 (2016) 1918–1924 1919

measuring devices [21,25], which generated a debate over different 
approaches used in formalizing uncertainty relations [26,27].

In this paper, we introduce a straightforward definition of er-
ror and disturbance. The key observation is that given an arbitrary 
quantum state, the measurement statistics of a measurement op-
eration on that state is unchanged if and only if we perform an 
additional compatible measurement to the state beforehand. Thus, 
we may define the disturbance of B (measurements of operator B) 
due to A (measurements of operator A) as the distance between 
the two probability distributions of the measurement outcomes 
due to B and B ◦ A maximized over all possible input quantum 
states. We introduce the definitions of error and disturbance in 
Sec. 2 and report a few basic properties of these quantities in 
Sec. 3. Then, in Sec. 4, we prove the error-disturbance trade-off 
relation for the case of 2-dimensional Hilbert space. In particular, 
we derive a sharp lower bound of the sum of error and distur-
bance. We also give the trade-off relation in d-dimensional Hilbert 
space for a special but important case. Finally, we draw a few con-
clusions in Sec. 5.

2. Definitions and notations

Suppose one is given a density matrix ρ in a d-dimensional 
Hilbert space with d ≥ 2. Let A be the projective measurements of 
operator A with rank-one projectors. (Unless otherwise stated, all 
measurements in this paper are associated with rank-one projec-
tors. Note that our discussion can be easily extended to the case of 
a general positive operator-valued measurement. We restrain from 
doing so to avoid unnecessary notational and indexing complica-
tions.) The probability distribution obtained from applying A to ρ
is given by the vector

PA(ρ) = (
p(A)

i (ρ)
)d

i=1 ≡ (〈ai |ρ |ai〉
)d

i=1, (5)

where |ai〉 〈ai | is the rank-one projector corresponding to the ith
measurement outcome. We now consider measuring ρ using an-
other projective measurement A′ before feeding the resultant state 
to B. We write the probability distribution of the measurement 
outcomes of A′ by PA′(ρ). More importantly, the probability dis-
tribution of the final measurement outcomes of B ◦A′ is given by 
PB◦A′(ρ) = PB(ρ ′) where ρ ′ = ∑

i 〈a′
i |ρ |a′

i〉 |a′
i〉 〈a′

i | with |a′
i〉 〈a′

i |
being the rank-one projector corresponding to the ith measure-
ment outcome of A′ .

In general, PB◦A′(ρ) is different from PB(ρ) as measurements 
change the state of a quantum system. We would like to know 
how a change in measurement A′ affects the change of PB(ρ)

through their classical statistics of their measurement outcomes 
only. With this motivation in mind, for any given metric D(·, ·) of 
an Euclidean space, we define the state-dependent error between 
PA(ρ) and PA′ (ρ), and the state-dependent disturbance between 
PB(ρ) and PB(ρ ′) as

ερ(A,A′) = D(PA(ρ), PA′(ρ)) (6)

and

ηρ(A′,B) = D(PB(ρ), PB(ρ ′)), (7)

respectively. Here, the definition of ηρ(A′, B) is known. Since our 
goal is to study the maximum pointwise deviation in the distribu-
tion of measurement outcomes, we use the metric based on the 
infinity norm, namely,

D(x, y) = max
i

|xi − yi|. (8)

We now define the state-independent error and the state-
independent disturbance by

ε(A,A′) = max
ρ

ερ(A,A′) (9)

and

η(A′,B) = max
ρ

ηρ(A′,B), (10)

where Eq. (10) measures the incompatibility of quantum measure-
ments A′ and B, shown in [24]. From now on, the terms “error” 
and “disturbance” refer to the state-independent versions unless 
otherwise stated. Note that these definitions meet the proposed 
operational constraint [19] for ε(A, A′) = 0 if and only if A = A′
and η(A′, B) = 0 if and only if A′ = B.

Finally, to obtain a trade-off relation between error and distur-
bance in one measurement, that is, to find out how much we need 
to sacrifice on one to lower the other, just as what Heisenberg did, 
we introduce the state-independent overall error

�(A,A′,B) = max
ρ

(
ερ(A,A′) + ηρ(A′,B)

)
. (11)

Clearly, ε + η ≥ �.

3. Basic properties of the state-independent error and 
disturbance

According to definitions in Sec. 2,

ερ(A,A′) = max
i

∣∣tr (
ρ(|ai〉 〈ai| − |a′

i〉 〈a′
i|)

)∣∣ (12)

ηρ(A′,B) = max
i

∣∣tr(ρ(|bi〉 〈bi | −
∑

j

∣∣∣〈a′
j|bi〉

∣∣∣2 |a′
j〉 〈a′

j|)
)∣∣,

we have

ε(A,A′) = max
i

R
(|ai〉 〈ai| − |a′

i〉 〈a′
i|
)

(13)

and

η(A′,B) = max
i

R
( |bi〉 〈bi | −

∑
k

∣∣〈bi |a′
k〉

∣∣2 |a′
k〉 〈a′

k|
)
. (14)

Here, R(·) is the spectral radius of a matrix (the largest of absolute 
values of the eigenvalues). Similarly, we have

�(A,A′,B) = max
i, j,±

R
( |ai〉 〈ai| − |a′

i〉 〈a′
i | ±

|b j〉 〈b j| ∓
∑

k

∣∣〈b j|a′
k〉

∣∣2 |a′
k〉 〈a′

k|
)
. (15)

Note that the maximum of ερ can be attained by a pure state ρ; 
and similarly for ηρ and ερ + ηρ .

Property 1 (Range). The error satisfies

ε(A,A′) ≤ 1 (16)

for any A, A′ , with equality if and only if 〈a′
i|ai〉 = 0 for some i. In addi-

tion, the disturbance obeys

η(A′,B) ≤ 1 − 1/d; (17)

for any A′, B, with equality if and only if there is an i such that |bi〉 is 

unbiased in 
( |a′

j〉
)d

j=1 . That is to say, 
∣∣∣〈a′

j |bi〉
∣∣∣2 = 1/d for all j.

Proof. The rank of the matrix |ai〉 〈ai | − |a′
i〉 〈a′

i | is at most 2. Thus, 
the spectral radius of this matrix can be calculated easily as |ai 〉
and |a′

i〉 − 〈ai |a′
i〉 |ai〉 are orthogonal. Hence, Eq. (13) becomes

ε(A,A′) = max
i

√
1 − ∣∣〈a′

i|ai〉
∣∣2

. (18)

Consequently, ε(A, A′) ≤ 1 with equality holds when there exists 
an i such that 〈a′

i |ai〉 = 0.
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