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The description of the entanglement evolution of a complex quantum system can be significantly 
simplified due to the symmetries of the initial state and the quantum channels, which simultaneously 
affect parts of the system. Using concurrence as the entanglement measure, we study the entanglement 
evolution of few qubit systems, when each of the qubits is affected by a local unital channel 
independently on the others. We found that for low-rank density matrices of the final quantum state, 
such complex entanglement dynamics can be completely described by a combination of independent 
factors representing the evolution of entanglement of the initial state, when just one of the qubits 
is affected by a local channel. We suggest necessary conditions for the rank of the density matrices 
to represent the entanglement evolution through the factors. Our finding is supported with analytical 
examples and numerical simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Current development of quantum technologies suggests quan-
tum entanglement as the exclusive resource for many potential 
applications, such as quantum teleportation, superdense coding, 
quantum cryptography and quantum computing [1]. Apart from 
entanglement generation [2–4] and detection [5], successful prac-
tical utilization of entanglement-based quantum technologies de-
mands efficient protocols for entanglement protection from detri-
mental environmental influence [6] and its recovery after a pos-
sible partial loss [7–9]. The construction of these protocols, in 
turn, requires exact methods for entanglement quantitative de-
scription as well as clear understanding of the fundamental laws of 
the entanglement evolution. The lack of an accurate entanglement 
measure for multipartite entangled systems [1] imposes serious 
limitations on our ability to describe complex entanglement dy-
namics. Therefore, any realistic situation, when the description of 
the entanglement evolution of a multipartite quantum system can 
be simplified, is of great practical importance.

An important example of such a simplified description of com-
plex entanglement dynamics was given by Konrad et al. [10]. It was 
shown that the entanglement evolution of an arbitrary pure two-
qubit state can be completely described by two factors, which are 
given by the initial entanglement of the pure state and the entan-
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glement dynamics of the maximally entangled state. Subsequently, 
this result has been extended to the cases of high-dimensional bi-
partite systems [11–13], mixed initial states [14] and multiqubit 
systems [15]. But, so far the exact equations for the entangle-
ment evolution has been obtained under assumption that just one 
subsystem of the entangled system undergoes the action of an en-
vironmental channel (i.e. the system is affected by a single-sided 
channel). If, in contrast, the system is subordinated to multi-sided 
channels, only inequalities can be derived theoretically. In practice, 
it is often required to distribute parts of an entangled system be-
tween several remote recipients [16]. In this case, each subsystem 
is coupled locally with some environmental channel, i.e. the quan-
tum system is the subject of many-sided channels. Recently, we 
analyzed the entanglement dynamics of initially pure three-qubit 
Greenberger–Horne–Zeilinger (GHZ) state, when each qubit is si-
multaneously affected by a noisy channel [17]. We showed that, in 
some cases, the entanglement dynamics of the three-qubit system 
in many-sided channels can be completely described by factors, 
which represent the evolution of the entangled system in single-
sided channels. Similar result has been independently obtained by 
Man et al. [18] for generalized multiqubit GHZ states. Moreover, 
using so-called G-concurrence [19] as the entanglement measure, 
Gheorghiu and Gour [20] have recently shown that the average 
loss of entanglement induced by many-sided local channels is in-
dependent on the initial state and is completely defined by the 
local channels.

In this paper, we analyze the entanglement evolution of two-, 
three- and four-qubit systems affected by local many-sided chan-
nels. Using Wootter’s concurrence [21] for two qubits and its ex-
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tension to higher dimensions [22] for multiqubit systems, we show 
that, for low-rank density matrices of the final state, such a com-
plex entanglement dynamics can be completely described by fac-
tors representing single-sided entanglement dynamics of the initial 
state. For two qubits, in particular, the above factorization can 
be achieved, if the rank of the final state density matrix is two. 
For multiqubit systems, in contrast, the factorization is possible 
for density matrices with rank no higher than four. On analytical 
examples and by numerical simulations we show that the factor-
ization is independent on the initial (pure) quantum state of the 
qubit system and the local channels, as far as the above rank con-
ditions are fulfilled. Since it is generally difficult to generate a low 
rank final state density matrix out of an arbitrary initial multiqubit 
state, for three and four qubit systems, we shall assume first that 
the initial state is a maximally entangled state, either GHZ or W 
state. The symmetry of the initial states allows us generating final 
state density matrices with all possible ranks for arbitrary local 
channels. Later we shall relieve this latter assumption extending 
our results to the case of arbitrary initially pure state of the qubits.

This work is organized as follows. In the next section we shall 
briefly describe the entanglement measures of use and introduce 
the quantum operation formalism [23] that allows us to access the 
state dynamics of quantum systems under the action of local noisy 
channels. In Sec. 3 we step-by-step analyze the entanglement dy-
namics of two-, three- and four-qubit systems affected by local 
many-sided channels and show examples when such a complex 
entanglement dynamics can be factorized on terms representing 
single-sided entanglement evolution. In Sec. 4 we discuss possible 
implications of our results to theoretical and experimental descrip-
tion of the entanglement dynamics. We conclude in Sec. 5.

2. Concurrence and quantum state dynamics

2.1. The entanglement measure

It has been found difficult to quantify the entanglement of 
mixed many-partite states, and no general solution is known apart 
from few cases of low-dimensional systems [1]. Wootter’s concur-
rence, for instance, allows us to compute the entanglement of an 
arbitrary state of a two-qubit system, which is given by the den-
sity matrix ρ , as CW = max{0, λ1 − λ2 − λ3 − λ4}. Here λi are the 
square roots of the four eigenvalues of the non-Hermitean matrix 
ρ (σy ⊗ σy)ρ

∗(σy ⊗ σy), if taken in decreasing order. It is impor-
tant to note that this matrix is obtained from the density matrix ρ
by simultaneous inversion of the single-qubit subsystems with the 
help of the only generator σy of the SO(2) group.

Various extensions of Wootter’s concurrence have been worked 
out over the years [1]. Ou et al. [22], in particular, suggested a 
generalization of Wootter’s concurrence for bipartite states, if the 
dimensions of the associated Hilbert subspaces are larger than two. 
For a d1 ⊗ d2-dimensional quantum system, this concurrence can 
be written as

C =
√√√√d1(d1−1)/2∑

m=1

d2(d2−1)/2∑
n=1

(Cmn)
2 , (1)

where each term Cmn is given by

Cmn = max{0, λ1
mn − λ2

mn − λ3
mn − λ4

mn} . (2)

Here, the λk
mn, k = 1..4 are the square roots of the four nonvanish-

ing eigenvalues of the matrix ρ ρ̃mn , if taken in decreasing order. 
These matrices ρ ρ̃mn are formed by means of the density ma-
trix ρ and its complex conjugate ρ∗ , and are further transformed 
by the operators Smn = Lm ⊗ Ln as: ρ̃mn = Smnρ

∗ Smn . In this nota-
tion, moreover, Lm are d1(d1 −1)/2 generators of the group SO(d1), 
while the Ln are the d2(d2 − 1)/2 generators of the group SO(d2).

Although the bipartite concurrence (1) reduces to Wootter’s 
concurrence for the special case of two qubits, in general it is 
an approximate entanglement measure, which provides limited in-
formation about entanglement of the bipartite system [22]. While 
the dimensionality of the Hilbert space of a two-qubit system is 
four, the inversion of an arbitrary state ρ is unambiguously de-
fined by the single generator of the SO(2) group. In higher dimen-
sions, however, there is no unique way to invert a given quantum 
state [24]. Ambiguous choice of the state inversion leads to the 
summation over all possible d1(d1 − 1)d2(d2 − 1)/4 state inver-
sions in Eq. (1) in all 2 ⊗ 2-dimensional subspaces of the original 
d1 ⊗d2-dimensional Hilbert state space of the bipartite system. The 
main consequence of such approximation for state inversion is that 
there may be only four nonzero eigenvalues of the matrix ρ ρ̃mn , 
while the other d1d2 − 4 eigenvalues of this matrix always vanish.

In spite of the above limitations, concurrence (1) has been 
shown to be quite powerful measure of entanglement [9,12,14]. 
Using the bipartite concurrence Li et al. [25] formulated an ana-
lytical lower bound for multiqubit concurrence, which is given by 
a squared sum of the bipartite concurrences computed for all pos-
sible bi-partitioning of the multiqubit system. For three qubits, in 
particular, the lower bound can be written in terms of the three bi-
partite concurrences that correspond to possible cuts of two qubits 
from the remaining one, i.e.

τ3(ρ) =
√

1

3

(
(C12|3)2 + (C13|2)2 + (C23|1)2

)
. (3)

This lower bound, moreover, has been used to describe the entan-
glement dynamics of three-qubit states under the action of certain 
multi-sided noisy channels [26]. On particular analytical examples 
and by numerical simulations, it has been shown that for three-
qubit density matrices with rank no higher than four, the lower 
bound (3) provides adequate description of the entanglement evo-
lution irrespective from system–channel coupling rate and for all 
times of interaction. For density matrices with higher ranks, how-
ever, the lower bound vanishes after a finite time, while the quan-
tum states it is applied to are not separable, i.e. possess certain 
amount of entanglement. This behavior of the lower bound (3) is 
not the consequence of the entanglement sudden death [27], but is 
induced by the approximate character of the bipartite concurrence 
(1) as an entanglement measure.

2.2. Quantum operation formalism

Quantum operation formalism is a very general and prominent 
tool to describe how a quantum system has been influenced by 
its environment. According to this formalism the final state of the 
quantum system, that is coupled to some environmental channel, 
can be obtained from its initial state with the help of (Kraus) op-
erators

ρfin =
∑

i

Ki ρini K †
i , (4)

and the condition 
∑

i K †
i Ki = I is fulfilled. Note that we consider 

only such system–environment interactions that can be associated 
with completely positive trace-preserving maps [23].

If the quantum system of interest consists of just a single qubit, 
which is subjected to some environmental channel A, then an arbi-
trary quantum operation associated with the channel’s action can 
be expressed with the help of at most four operators [23]. Let us 
define the four operators through the Pauli matrices as

K1(a1) = a1√
2

(
1 0
0 1

)
, K2(a2) = a2√

2

(
0 1
1 0

)
, (5)

K3(a3) = a3√
2

(
0 −i
i 0

)
, K4(a4) = a4√

2

(
1 0
0 −1

)
,
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