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Sign change of the surface energy of a two-component superconductor
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It is shown that the sign of the surface energy of a two-component superconductor is determined not
only by the Ginzburg–Landau parameters of two superconducting components, but also by a temperature-
independent parameter κξ , which is defined as the ratio of the coherence lengths of two components.
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It is well known that a conventional superconductor can be cat-
egorized as type-1 or type-2, depending on its behavior under a
magnetic field. The criterion that determines whether a supercon-
ductor is of type-1 or type-2 is the Ginzburg–Landau (GL) parame-
ter κ [1]. It is defined as the ratio of the penetration depth λ over
the coherence length ξ , κ = λ/ξ , and determines the sign of the
surface energy of a superconductor. The critical value κc = 1/

√
2

represents the demarcation line between type-1 (κ < κc) super-
conductor which has positive surface energy and type-2 (κ > κc)

superconductor, which has negative surface energy [2].
Motivated by recent interest in multi-component superconduc-

tors [3,4], here we study one-dimensional superconducting-normal
boundary in an abstract two-component system. We show that,
the sign of the surface energy of such system is determined not
only by the Ginzburg–Landau parameters κi (i = 1,2) of two su-
perconducting components, but also by a temperature-independent
parameter κξ , which is defined as the ratio of the coherence
lengths of two components: κξ = ξ1/ξ2. Further, we identify the
sign changes of the surface energy of type-1+ type-2 and type-2+
type-2 materials due to the variation of these three parameters.

We start with a general system in which two superconducting
components coexist. The GL free energy density of the system is
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where fn0 is the free energy density of the body in the normal
state in the absence of the magnetic field, V (|Ψi|2) = ai |Ψi |2 +
bi |Ψi |4/2 (i = 1,2). η is a coefficient characterizes Josephson cou-
pling between two superconducting components. In the following
we do not consider coupling effect and set η = 0. We also assume
that the effective mass m∗

i and charge e∗
i of two components are

equal: m∗
i = m∗ , e∗

i = e∗ . There are four characteristic lengths: the
penetration depth λi and coherence length ξi for each component
are given by: λi = (m∗c2/4πe∗2Ψ 2

i0)
1/2, ξi = h̄/(2m∗|ai |)1/2, where

Ψi0 = (−ai/bi)
1/2. The thermodynamic critical magnetic field of

the individual component is Hct(i) = Φ0/(2
√

2πλiξi), where Φ0 =
hc/e∗ is the flux quantum. The magnetic field penetration depth
and the thermodynamic critical magnetic field of the system (1)
are: λ = (1/λ2

1 + 1/λ2
2)

−1/2, Hct = (H2
ct(1) + H2

ct(2))
1/2. Notice that

λ < min(λ1, λ2), Hct > max(Hct(1), Hct(2)).
Let us consider a plane interface between normal (n) and super-

conducting (s) phases in a two-component superconductor, taking
the interface as the yz-plane and the x-axis into the s phase. The
surface energy αns is defined as, under the thermodynamic criti-
cal magnetic field Hct =Hct ẑ, the Gibbs energy difference between
the n, s transitional state and the fully normal state (or fully super-
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conducting state since these must be equal) of the superconductor
with unit cross-section:

αns =
∞∫

−∞
dx
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The integrand vanishes, both within the n phase (x → −∞),
where Ψi = 0 and ∇ × A = Hct , and within the s phase (x → ∞),
where Ψi = Ψi0 and ∇ × A = 0. Now the distribution of all quan-
tities depends only on the coordinate x. This fact enables us to
choose gauge potential as A = (0, A y(x),0). Then the order pa-
rameters Ψi can be taken real. We shall use the dimensionless
quantities as following: ρ ≡ x/λ, ψ1 ≡ Ψ1/Ψ10, ψ2 ≡ Ψ2/Ψ20,
A ≡ |A|/Hctλ, A′ = B ≡ |∇ × A|/Hct . Then the expression (2) be-
comes αns = (H2

ctλ/8π)
∫ ∞
−∞ dρ{∑2

i=1 (Hct(i)/Hct)
2[2(ξi/λ)2ψ ′ 2

i +
(Hct/Hct(i))

2(λ/λi)
2 A2ψ2

i − 2ψ2
i + ψ4

i ] + (A′ − 1)2}. It can be ver-
ified that all coefficients in the integrand can be represented as func-
tions of three dimensionless temperature-independent parameters: κ1 ≡
λ1/ξ1, κ2 ≡ λ2/ξ2, κξ ≡ ξ1/ξ2.1 And the surface energy (2) can be
rewritten as:
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ξ ). The GL equations of motion fol-
lowing from the free energy (1) are:

A1ψ
′′
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2
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1 ,

A2ψ
′′
2 = B2

2
A2ψ2 − ψ2 + ψ3

2 ,

A′′ = (
C1ψ

2
1 + C2ψ

2
2

)
A, (4)

with boundary conditions: ψ1(−∞) = ψ2(−∞) = 0, A′(−∞) = 1,
ψ1(∞) = ψ2(∞) = 1, A′(∞) = 0. The surface energy αns is ob-
tained from the substitution of field variables ψ1, ψ2, A that satisfy
the GL equations (4) into (3).

It is clear from (3) and (4) that the sign of the surface energy
is determined by three independent dimensionless parameters: κ1,
κ2, κξ . If these three parameters are known for a material consid-
ered, one can obtain the value of αns/(H2

ctλ/8π) from the substi-
tution of ψ1, ψ2, A that satisfy (4) into (3), then the sign of the
surface energy is identified.

When the coherence lengths of two components are equal:
ξ1 = ξ2, i.e., κξ = 1, it is easily verified that Eqs. (4) have the first
integral:
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(5)

1 In fact here we need at least three parameters to express ratios of four char-
acteristic lengths: λ1, λ2, ξ1, ξ2. We select κ1, κ2, κξ because they have definite
physical meaning and help to give an intuitive estimate of the sign of the surface
energy.

With (5), the expression (3) becomes αns = H2
ctλ

4π

∫ +∞
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2
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2
ψ ′ 2

2 + A′(A′ − 1)}. The sign of the surface energy can be deter-

mined by the procedures described above. Let us remark on several
particular cases: In the case κ1 	 1, κ2 	 1, the first two terms in
the integrand can be neglected and the sign of the surface energy
is always negative since A′ ∈ [0,1]. The sign of the surface energy
is positive in the opposite case κ1 � 1, κ2 � 1. If one component
is of extreme type-2, while the other component is of extreme
type-1, i.e., κ1 	 1, κ2 � 1. The contribution of the first term in
the integrand can be neglected and the sign of the surface energy
is positive.

Let us now study general cases in which there is disparity in
coherence lengths between two components: ξ1 �= ξ2, i.e., κξ �= 1.
We then need to solve Eqs. (4) with given boundary conditions nu-
merically. Before a detailed numerical work is undertaken, we first
analyze the problem qualitatively. We note that in the integrand
in (2) only the second term V (|Ψ1,2|2) contributes the negative
value to the surface energy. The distance scale over which the
condensates tends to its expectation value Ψi0 is of order ∼ ξi .
V (|Ψi|2) decreases from 0 to ai |Ψi0|2 + bi |Ψi0|4/2 = −H2

ct(i)/(8π)

in the same range. The length scale over which the magnetic field
decays is ∼ λ. The last term of integrand in (2) 1

8π (Hct − ∇ × A)2

increases from 0 to 1
8π H2

ct in this range. The similar term in the
surface energy expression when only single superconducting com-
ponent exists increases from 0 to 1

8π H2
ct(i) in a range ∼ λi . Since

λ < min(λ1, λ2), Hct = (H2
ct(1) + H2

ct(2))
1/2, the integral value of the

last term in integrand in (2) is positive and is much larger than
the sum of the integral values of similar terms in the surface en-
ergy expressions when single component exists. We then conclude
that there is a trend of increase in the surface energy of a two-
component superconductor comparing to the sum of the surface
energy of the single component cases. The detailed numerical sim-
ulations below confirm this idea.

To explore the concrete behavior of the sign of the surface en-
ergy with three parameters κ1, κ2, κξ , we then search for the
numerical solutions of the GL equations. (4). And we really identi-
fied the sign change of the surface energy due to the variation of
these three parameters. There are three cases:

Case 1. κ1 < 1/
√

2, κ2 < 1/
√

2, i.e., two components are both of
type-1. As we have shown, there is a trend of increase in the sur-
face energy of a two-component superconductor comparing to the
sum of the surface energy of the single component cases. Since the
sign of the surface energy of a type-1 material is always positive,
we then conclude that the system has positive surface energy.

Case 2. κ1 > 1/
√

2, κ2 < 1/
√

2, i.e., the first component is of type-
2, while the second is of type-1. When the third parameter κξ 	 1,
i.e., ξ1 	 ξ2, thus λ1 > ξ1/

√
2 	 ξ2 > λ2, λ = (1/λ2

1 + 1/λ2
2)

−1/2 ≈
λ2 < ξ2. Then the integral value of the last term in integrand in (2)

1
8π (Hct − ∇ × A)2 gains ascendancy over that of the second term
V (|Ψ1,2|2), and the sign of the surface energy tends to be positive.
On the other hand, when κξ � 1, i.e., ξ1 � ξ2, penetration depth
λ may fall into the region ξ1 < λ < ξ2, and the sign of the surface
energy can take negative. We then conclude that there is a criti-
cal value κξc at which the surface energy vanishes. As an example,
we show in Fig. 1 the sign change of the surface energy of a two-
component superconductor with κ1 = 6.0, κ2 = 0.5. It is clear that
the sign of the surface energy is negative when κξ < κξc = 0.35.
Generally, for fixed κ1 > 1/

√
2, κ2 < 1/

√
2, the critical value κξc

can be determined using numerical method as shown above. How-
ever, a rough estimate of the upper limit of the critical value κξc
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