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We present computer simulations run with a stochastic cellular automaton which describes d = 1
particle systems connected to reservoirs which keep two different densities at the endpoints. We fix the 
parameters so that there is a phase transition (of the van der Waals type) and observe that if the densities 
at the boundaries are metastable then, after a transient, the system reaches an apparently stationary 
regime where the current flows from the reservoir with smaller density to the one with larger density.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Fourier law states that the heat flux is proportional to mi-
nus the gradient of the temperature, analogously the Fick law says 
that the mass flux is proportional to minus the gradient of the 
mass density. Both laws state that a gradient gives rise to a cur-
rent. On the other hand in the presence of a first order phase 
transition there is a spontaneous separation of phases giving rise to 
a gradient (of the corresponding order parameter) without a cur-
rent. Purpose of this article is to investigate how this fits with the 
Fourier or the Fick law, in particular to understand the role of the 
latent heat in heat conduction. In the sequel we will however refer 
to mass transport (hence to the Fick law), as we will study parti-
cles models.

The physical system we have in mind is made by a channel con-
taining a gas of particles and by two density reservoirs which are 
respectively connected to the right and to the left of the channel 
and which fix the density of the gas at the endpoints of the chan-
nel at values ρ+ and, respectively, ρ− . We further suppose that the 
temperature is fixed throughout the channel at a value for which 
there is a phase transition.

We model the channel as one-dimensional and the gas as a 
system of particles which interact via a two-body attractive Kac 
potential, which in the Kac scaling limit gives rise to a van der 
Waals phase transition. We actually consider two models, the first 
one (described in Section 3) is a lattice gas with Kawasaki dynam-
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ics and Kac potential, the second one (described in Section 2) is a 
stochastic cellular automaton (CA) whose updating rules mimic the 
Kawasaki dynamics of the first one. While the first model is con-
venient for a theoretical analysis, the second one is amenable to 
computer simulations. Unfortunately, we cannot go very far theo-
retically and our results rely essentially on the simulations.

The simulations exhibit two totally unexpected phenomena 
when the reservoirs densities ρ− and ρ+ are such that ρ− <

ρ+ , and for the gas in the channel these values are minus/plus 
metastable (i.e. metastable and in the two different phases). In 
such a case the system seems to reach a stationary state such that 
(1) the current in the channel becomes positive so that mass goes 
from the reservoir at lower density to the one with larger density; 
(2) in a large fraction of the volume the density is metastable. 
We will argue in Section 3 that this does not contradict the Fick 
law, but our arguments are not mathematically complete. A conse-
quence of (1) is the theoretical possibility of constructing circuits 
made of the above channel connected to two large but finite reser-
voirs which also exchange mass with each other (either directly or 
via a second channel where the gas has no phase transitions). Pre-
liminary simulations seem to indicate that, in the circuit, after a 
transient, there is a stationary current which runs in the absence 
of an external bias. We believe that such a state is metastable with 
a very long life, but that in the long run the system will eventually 
decay to a state with no current.

2. The simulations

Our simulations use a CA introduced in [1] to simulate the time 
evolution of a system of particles which undergoes a phase transi-
tion of van der Waals type. The CA describes a system of particles 
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in the interval [1, L] of Z, hereafter called “channel”. The particles 
have only velocities v ∈ {−1, 1} and we impose single occupancy, 
namely there cannot be two particles at same site with same ve-
locity, η(x, v) ∈ {0, 1} being the occupation variable at (x, v).

The definition of the CA involves five parameters, L, γ : γ −1 ∈
N, C > 0 and 0 ≤ ρ− < ρ+ ≤ 1. We use the following notation: 
for x ∈ [1, L], η(x) := η(x, −1) + η(x, 1); for x ≥ 1, η(+)(x) = η(x)
if x ∈ [1, L] and η(+)(x) = 2ρ+ if x > L; for x ≤ L, η(−)(x) = η(x) if 
x ∈ [1, L] and η(−)(x) = 2ρ− if x < 1; finally for x ∈ [1, L] we call

N+,x,γ =
x+γ −1∑
y=x+1

η(+)(y), N−,x,γ =
x−1∑

y=x−γ −1

η(−)(y)

We are now ready to define how the CA operates. The unit 
time step updating is obtained as the result of two successive 
operations: (1) velocity flip. At all sites x ∈ [1, L] where there is 
only one particle we update the velocity of the particle to become 
+1 with probability 1

2 + εx,γ and −1 with probability 1
2 − εx,γ , 

εx,γ = Cγ 2[N+,x,γ −N−,x,γ ]. At all other sites the occupation num-
bers are left unchanged. Moreover, after adding two auxiliary sites 
0 and L + 1, we put a particle in 0 with velocity +1 with probabil-
ity ρ− , while we leave it empty with complementary probability; 
analogously we put a particle in L +1 with velocity −1 with proba-
bility ρ+ while we leave it empty with complementary probability. 
(2) advection. Each particle moves by one lattice step in the direc-
tion of its velocity, if it goes to L + 1 or to 0 it is deleted.

Remarks. εx,γ is a “small bias” (for γ small) which directs the 
velocity towards regions with higher density. As discussed in the 
next section, this can be interpreted as the action of two-body 
“long range” attractive forces; in such a context the constant C
is proportional to the inverse temperature β , 2C = β , and in the 
limit as γ → 0 the equilibrium phase diagram exhibits a van der 
Waals phase transition for all C > 0.5. The addition of the extra 
sites 0 and L + 1 in the definition of the CA simulates the action of 
the two reservoirs which after each time step put a new particle at 
0 and at L with probability ρ− and respectively ρ+ . The action of 
the reservoirs is however twofold: in fact, besides the aforemen-
tioned insertion of particles in the channel with probabilities ρ+
and ρ− , it also enters in the definition of εx,γ , where the occu-
pation numbers at y > L and y < 1 are replaced by the average 
reservoir densities ρ+ and, respectively, ρ− .

We have run several Monte Carlo simulations for different val-
ues of the parameters defining the CA, we report here results in 
the case C = 1.25, γ −1 = 30, L = 600 and ρ− < ρ+ = 1 − ρ− . 
We have computed the local particles density ρ(x, t) by taking 
the time average 1

2T

∑t+T −1
s=t ηs(x), ηs(x) the number of particles 

at x at time s, T = L2; however, instead of ρ(x, t) we have plot-
ted m(r, t) = 2ρ(γ −1r, t) − 1, thus the unit space length becomes 
γ −1 (the interaction range) and the density is written in “mag-
netization variables” so that the magnetization at the endpoints is 
m+ = −m− .

In Fig. 1 we report what observed when m± = ±1 while the ini-
tial configuration has m0,x = −1 for x ≤ 3L/4 and m0,x = +1 else-
where. On the time scale L2 we see the initial step to smoothen 
out: the profile becomes a curve starting on the left at m− = 1 and 
increasing slowly, almost linearly, till 3L/4 where it has a value 
≈ −mβ , mβ = 0.985, then there is a transition region where the 
magnetization increases quite abruptly from −mβ to mβ ; after-
wards the profile goes again slowly, almost linearly, up to m+ = 1
which is reached at the right endpoint. As time increases the pro-
file moves rigidly towards the middle of the channel which is 
reached on times ≤ L3 and in the time of our simulations it re-
mains unchanged except for small fluctuations. In the next section 
we will interpret the values ±mβ as the equilibrium magnetization 
densities when the inverse temperature is β = 2C .

Fig. 1. Magnetization profiles for C = 1.25 and m+ = 1 with space in γ −1 (= 30) 
units. The parameters mβ and m∗ have values mβ = 0.985 and m∗ = 0.775. The dif-
ferent curves in the plot correspond to the averaged magnetization computed at 
different times: t = 105 (empty squares), t = 106 (filled squares), t = 107 (empty 
circles) and t = 108 (filled circles). The black thin line denotes the initial configura-
tion, corresponding to a step function centered at r = 15.

Fig. 2. Magnetization profiles for C = 1.25, mβ = 0.985 and m∗ = 0.775, and with 
m+ = 0.93. The curves in the plot have the same meaning of those illustrated in 
Fig. 1. The initial datum is a step function centered at r = 10.

If we decrease m+ till mβ we see the same pattern with a tran-
sition region which is essentially unchanged and the quasi-linear
parts with a smaller slope. However if m+ decreases past mβ keep-
ing m+ > m∗ = 0.775 we see a completely different picture (as 
argued in the next section, the values |m| ≤ m∗ are to be regarded 
as unstable, m∗ < |m| < mβ as metastable, and |m| ≥ m∗ as sta-
ble). In Fig. 2 we report simulations with m+ = 0.93. We start now 
from an initial configuration which has m0,x = −1 for x ≤ L/2 and 
m0,x = +1 elsewhere. We observe, after a short transient, a pattern 
similar to the one in Fig. 1, i.e. with a transition region around the 
middle which is very similar to the previous one. To its right and 
left there are again approximately linear profiles but now they are 
decreasing (because m+ < mβ ). In contrast to the previous case as 
time increases on the scale L2 the transition region moves away 
from the middle and on times L3 it “collides” with an endpoint of 
the channel: in Fig. 2 it is represented by a bump on the right 
of the channel where the magnetization rapidly increases from 
−mβ to m+ , m+ the magnetization forced by the right reservoir. 
If we change the seed of the random generator we may as well 
see the bump on the left. Such a profile seems stationary as it 
stays unchanged (modulo small fluctuations) for very long times, 
our longest simulation has t = 1011.
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