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1. Introduction

The interest in noncommutative spaces has increased in recent 
years, because they may describe the structure of space (or space-
time) at the Planck scale, as several approaches to quantum gravity 
seem to indicate [1]. The formulation of quantum mechanics on a 
noncommutative space is usually called noncommutative quantum 
mechanics. Path integral techniques have demonstrated to be con-
venient in the study of this theory.

A characteristic of noncommutative spaces is that the corre-
sponding classical phase space is not canonical, i.e. the Poisson 
brackets do not have the usual form. However, the standard defi-
nition of path integral assumes a canonical phase space [2–4], and 
one has therefore to extend the formalism to include this more 
general situation.

This is an interesting problem, that has been afforded in a 
variety of ways. In fact, several different approaches have been 
proposed for the definition of the path integral in noncommuta-
tive spaces. The first one is based on the noncanonical structure of 
the phase space: Darboux theorem ensures that it is always possi-
ble to find a transformation to canonical (and hence commutative) 
coordinates, that will deform the measure of the integral, but al-
low otherwise to use the standard formulation of the path integral 
[5–7]. A different approach uses the standard integration measure, 
but treats the products in the integrand as star products between 
functions of noncommutative coordinates [8]; this framework is 
more suitable for a generalization to field theory. Finally, some au-
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thors propose the adoption of smeared (coherent state) bases for 
the Hilbert space to avoid the use of noncommutative coordinates 
in the computation of the path integral [9,10]. Although we are not 
aware of any discussion in the literature, we presume that these 
approaches are equivalent.

Anyway, most work on the subject has been developed for the 
so-called Moyal plane [11], a simple model whose Poisson brackets 
are constant tensors, hence necessarily implying the breakdown of 
the Lorentz invariance. However, more general models of noncom-
mutative spaces exist, in which the Lorentz invariance is preserved. 
The best known is the Snyder model [12], which, in spite of the 
presence in its definition of a parameter β with the dimension of 
inverse momentum, is Lorentz invariant. The quantum mechanics 
of the Snyder model has been studied in several papers [13,14].

In its nonrelativistic version, the Snyder model is based on a 
deformation of the Heisenberg algebra, given by the commutation 
relations

[qi, p j] = i(δi j + β2 pi p j), [qi,q j] = iβ2 J i j, [pi, p j] = 0,

(1)

where qi and pi are the phase space coordinates, and J i j the an-
gular momentum generators; we use units in which h̄ = 1. Clearly, 
the classical limit of these commutators gives rise to a noncanoni-
cal phase space.

In this paper, we discuss the formulation of the one-particle 
nonrelativistic quantum mechanics of the Snyder model through 
path integral methods. We adopt the approach of [6] based on the 
noncanonical structure of phase space, since it is more suitable for 
our problem and closer to the spirit of Feynman’s original idea. 
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We give a detailed derivation starting from the definition of path 
integral and using a representation of the operators in terms of 
canonical coordinates. We also show that the same results can be 
recovered in a more formal way using the techniques introduced 
in [15] for the study of first-order systems, taking for granted the 
definition of path integral for canonical variables. Our work gen-
eralizes some results recently obtained in [16] for the case of one 
spatial dimension, correcting an error in the measure of the path 
integral proposed there.

2. Noncanonical classical mechanics

Before discussing the path integral formulation of Snyder quan-
tum mechanics, we shortly review some facts concerning the non-
canonical Hamiltonian formalism [17,18], that will be useful in the 
following.

Let us consider noncanonical fundamental Poisson brackets

{ξi, ξ j} = �i j(ξ), (2)

where ξi denotes the phase space variables qi and pi and �i j is an 
invertible matrix. Then the Hamilton equations for the Hamiltonian 
H(ξ) read

ξ̇i = �i j
∂ H

∂ξ j
, (3)

or equivalently,

(�−1)i j ξ̇ j = ∂ H

∂ξi
. (4)

We want to obtain these equation from the variation of a first-
order action of the form

I =
∫

[ai(ξ)ξ̇i − H(ξ)]dt. (5)

Then one can easily check that the condition

∂a j

∂ξi
− ∂ai

∂ξ j
= (�−1)i j (6)

must hold. Solving (6) for the ai , one can write down the action 
which generates the Hamilton equations (3).

3. One-dimensional Snyder path integral

In this section we investigate the path integral for the one-
dimensional Snyder model. Although in this case noncommutativ-
ity is of course absent, the symplectic structure is still noncanoni-
cal, and the discussion will be useful for the understanding of the 
higher-dimensional case.

Clearly, when investigating the Snyder model, one must use the 
phase space formulation of the path integral. For a particle satisfy-
ing canonical Poisson brackets, moving in a one-dimensional space, 
the path integral is defined as

A =
∫

DpDq ei I , (7)

where

I =
t f∫

ti

Ldt =
t f∫

ti

(pq̇ − H(q, p))dt (8)

is the action (with L the Lagrangian and H the Hamiltonian), and 
DpDq is a measure on the space of paths in phase space that will 
be defined below.

It can be shown that in a momentum basis the transition am-
plitude from an initial state of momentum pi at time ti to a final 
state of momentum p f at time t f is given by

< p f |e−i Ĥ(t f −ti)|pi > = A. (9)

We have chosen a momentum basis, because, when we shall con-
sider Snyder space, the standard position variables will not com-
mute and hence do not form a complete set of observables.

We wish to generalize this formula to the one-dimensional Sny-
der phase space, whose only nontrivial Poisson bracket is

{q, p} = 1 + β2 p2. (10)

Given the Hamiltonian H = p2

2 + V (q), the Hamilton equations in 
Snyder space read

q̇ = (1 + β2 p2)p, ṗ = −(1 + β2 p2)
∂V

∂q
. (11)

These equations can be obtained from an action principle, as 
discussed in section 2. Defining ξ1 = q, ξ2 = p, the inverse of the 
symplectic matrix associated to (10) will be

(�−1)i j = 1

1 + β2 p2

(
0 −1
1 0

)
. (12)

Inserting in (6) one can get the particular solution

a1 = 0, a2 = −q

1 + β2 p2
, (13)

from which follows the action

I =
∫ (

− qṗ

1 + β2 p2
− H

)
dt =

∫ (
arctan βp

β
q̇ − H

)
dt, (14)

where the two expressions are related by an integration by parts. 
We will now show that inserting (14) into (7) gives the correct 
expression for the path integral.

We first recall some results concerning the quantum mechan-
ics of the one-dimensional Snyder model [19]. The Poisson bracket 
(10) goes into the commutator

[q̂, p̂] = i(1 + β2 p̂2). (15)

The operators q̂ and p̂ obeying (15) can be represented in a mo-
mentum basis by [20]

p̂ = p, q̂ = i(1 + β2 p2)
∂

∂ p
. (16)

These operators are hermitian with respect to the scalar product

< ψ |φ >=
+∞∫

−∞

dp

1 + β2 p2
ψ∗(p)φ(p). (17)

The identity operator can therefore be expanded in terms of mo-
mentum eigenstates | p > as [19]

1 =
∞∫

−∞

dp

1 + β2 p2
| p >< p | ,

with < p | p′ >= (1 + β2 p2)δ(p − p′). (18)

The eigenvalue equation for the position operator, q̂ | q >=
q | q >, has formal solutions1

< p |q > ∝ e−iq arctan βp
β (19)

1 These eigenstates are not physical, because they have infinite energy [19], but 
are sufficiently regular to adopt them in this setting.
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