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We investigate the local quantum uncertainty (LQU) between a block of L qubits and one single qubit 
in a composite system of n qubits driven through a quantum phase transition (QPT). A first-order QPT 
is analytically considered through a Hamiltonian implementation of the quantum search. In the case of 
second-order QPTs, we consider the transverse-field Ising chain via a numerical analysis through density 
matrix renormalization group. For both cases, we compute the LQU for finite-sizes as a function of L and 
of the coupling parameter, analyzing its pronounced behavior at the QPT.
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1. Introduction

The interplay between quantum information theory and statis-
tical mechanics has brought emerging connections between these 
research fields [1–3]. In particular, it has provided a deeper un-
derstanding about the role played by correlations in quantum 
phase transitions (QPTs). A seminal result in this direction is a 
link between the scaling of pairwise entanglement and QPTs in 
quantum spin chains [4,5]. This has been further developed by 
introducing a distinction between the characterization of first-
order and continuous QPTs [6,7]. For a block analysis, entangle-
ment entropy has been found to be related to the central charge 
of the Virasoro algebra associated with the conformal field the-
ory behind the critical model [8–10]. More generally, it has been 
shown that quantum correlation measures such as provided by 
the quantum discord [11] are also able to identify quantum crit-
icality [12,13]. Remarkably, pairwise quantum discord may ex-
hibit a more robust characterization of QPTs than pairwise en-
tanglement in certain cases. For instance, pairwise quantum dis-
cord between distant sites in a quantum chain may indicate 
a quantum critical point, while entanglement is absent already 
for very short distances [14,15]. In addition, for finite temper-
atures, pairwise quantum discord is able to reveal the QPT by 
non-analyticities in its derivatives, while the pronounced behav-
ior in two-qubit entanglement disappears for even small tempera-
tures [16].
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In this work, we aim at investigating the behavior of the local 
quantum uncertainty (LQU) [17] at quantum criticality. The LQU 
has been introduced as a quantum discord-like measure, which is 
primarily related with the skew information [18,19]. In particu-
lar, it plays a role in the characterization of quantum metrology 
protocols [17,20]. The behavior of LQU between pairs of spins in a 
quantum spin chain has been recently considered [21,22]. Here, we 
generalize this previous analysis for systems of dimension 2 × 2 by 
considering the LQU for blocks of arbitrary dimension D × 2 and 
also by discussing its finite-size behavior in both first-order and 
second-order QPTs. More specifically, we will evaluate the LQU be-
tween a block of L quantum bits (qubits) and one single qubit 
in a composite system of n qubits. For a first-order QPT, we will 
consider a Hamiltonian implementation of the quantum search, 
which is designed to find out a marked element in an unstruc-
tured search space of N = 2n elements. By analytical evaluation, 
we will show that the LQU exponentially saturates to a constant 
value at the critical point as we increase the block length L. This 
saturation is found to be enhanced by the system size n. On the 
other hand, at non-critical points, the LQU will be shown to van-
ish for large n. In the case of second-order QPTs, we consider the 
transverse-field Ising model with open boundary conditions. By 
implementing a numerical analysis via density matrix renormal-
ization group (DMRG), we will show that the concavity of the LQU 
as a function of the block size L characterizes the QPT. For both 
first-order and second-order QPTs, we also consider the LQU as a 
function of the coupling parameter, showing that the LQU exhibits 
a pronounced behavior at the quantum critical point indepen-
dently of the block sizes of L qubits. In particular, this pronounced 
behavior is sensitive to n, showing a scaling behavior as we in-
crease the size of the system.
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2. Local quantum uncertainty

The uncertainty of an observable K in a quantum state ρ is 
usually quantified by the variance V (ρ, K ) = TrρK 2 − (TrρK )2. 
It may exhibit contributions from both quantum and classical 
sources. Quantum uncertainty comes from the noncommutativity 
between K and ρ , being quantified by the skew (not commuting) 
information [18,19]

I(ρ, K ) = TrρK 2 − Trρ1/2 Kρ1/2 K . (1)

Indeed, suppose ρ and K commute. Then, ρ and K have a com-
mon basis of eigenstates {|k〉}, which means that the uncertainty of 
K in an individual eigenstate |k〉 vanishes. Hence, a nonvanishing 
uncertainty V (ρ, K ) is only possible if ρ is a classical mixing of 
{|k〉}. Therefore, the commutation of ρ and K implies that V (ρ, K )

has a classical origin.
The quantum uncertainty is intrinsically connected with the 

concept of quantum correlation. For example, let us consider a 
Bell state of two qubits, namely, |ψ〉 = (|00〉 + |11〉)/√2, where 
{|0〉, |1〉} denotes the computational basis. This is an eigenstate of 
the global observable σz ⊗σz , so there is no uncertainty on the re-
sult of a measurement of such an observable. On the other hand, 
the measurement of local spin observables is intrinsically uncertain 
for the density operator |ψ〉〈ψ |, since an entangled state cannot 
be an eigenstate of a local observable. In particular, the variance 
V (ρ, K ) for a local observable K will vanish if and only if the state 
is uncorrelated.

The concept of quantum uncertainty can be extended to mixed 
states. In this case, the skew information I(ρ, K ) vanishes if and 
only if ρ is not disturbed by the measurement of K . If K is a 
local observable, the states left invariant by local measurement are 
the states with zero quantum discord with respect to that local 
subsystem [23]. The quantum uncertainty on local observables is 
then intimately related to the notion of quantum discord and, as 
shown in Ref. [17], it can be used as a discord-like quantifier. We 
are now ready to define the local quantum uncertainty (LQU). Let 
ρ = ρAB be the state of a bipartite system, and let K � denote a 
local observable on B (K is represented by a Hermitian operator 
on B with nondegenerate spectrum �). The LQU as defined in [4], 
is given by

Q (ρ) = minK � I(ρ, K �). (2)

Notice that Q is the minimum quantum uncertainty associated to 
a single measurement on subsystem B . If there is a K for which 
Q = 0 then there is no quantum correlation between the two parts 
of the state ρ . As proved in Ref. [17], the LQU satisfies all the good 
properties of a discord-like measure. An analytical expression for 
Q can be obtained if we consider a bipartite D × 2 system. In this 
case

Q (ρAB) = 1 − λmax(W AB), (3)

where λmax is the maximum eigenvalue of the 3 × 3 symmetric 
matrix W whose elements are given by

(W AB)i j = Tr[ρ1/2
AB (I A ⊗ σiB)ρ

1/2
AB (I A ⊗ σ jB)]. (4)

In this work, we will consider a set of n qubits aligned in a chain, 
with the bipartition in subsystems A and B chosen as shown in 
Fig. 1.

3. LQU for the quantum search

The aim of the search problem is to find out a marked element 
in an unstructured list of N candidates. In a quantum setting, it is 
possible to solve the search problem with scaling 

√
N , as proved 

by Grover [24]. Here, we consider a Hamiltonian implementation 

Fig. 1. Bipartition used to defined the subsystems A and B for the LQU evaluation. 
The size L of the block A is arbitrarily chosen and subsystem B is taken as one 
qubit.

through a quantum system composed of n qubits, whose Hilbert 
space has dimension N = 2n . We denote the computational basis 
by the set {|i〉} (0 ≤ i ≤ N − 1). Without loss of generality, we can 
assume an oracular model such that the marked element is the 
state |0〉. So the implementation of the quantum search can be 
achieved through the projective Hamiltonian

H(s) = (1 − s)(1 − |ψ0〉〈ψ0|) + s(1 − |0〉〈0|), (5)

where |ψ0〉 = (1/
√

N) 
∑N−1

i=0 |i〉, and s denotes the normalized time 
0 ≤ s ≤ 1. By preparing the system in its ground state at time t = 0
and by considering an adiabatic dynamics, it evolves to the corre-
sponding instantaneous ground state at later times. In particular, 
the system exhibits a first-order QPT at s = 1/2. The ground state 
energy in terms of the normalized time s reads

E(s) = 1 −
√

1 − 4s(1 − s)N

2
, (6)

with N = 1 − 1/N . For the ground state vector |ψ(s)〉, we obtain

|ψ(s)〉 = √
a(s)|0〉 + √

c(s)
N−1∑
i=1

|i〉, (7)

where we have defined the quantities a(s) = 1
1+(N−1)k2

s
, c(s) =

k2
s

1+(N−1)k2
s

, and ks = 1 − E(s)
(1−s)N

. Note that, in the thermodynamic 
limit n → ∞, the structure of the Hamiltonian implies that the 
LQU can only be non-vanishing at the quantum critical point, even 
though its scaling is nontrivial at finite sizes. This can be observed 
from Eq. (5), where both |0〉 and |ψ0〉 are product states that be-
come orthogonal for n → ∞. In this limit, the ground state is |ψ0〉
for 0 ≤ s < 1/2, with energy E(s) = s, while the ground state is |0〉
for 1/2 < s ≤ 1, with energy E(s) = 1 − s. At s = 1/2 the ground 
state is degenerate. From Eq. (7), |ψ(1/2)〉 will be an equal super-
position of |0〉 and |ψ0〉 for n → ∞. It then follows that Q = 0
everywhere except at s = 1/2.

In order to determine the scaling at finite size n, we consider 
the density matrix ρ = |ψ(s)〉〈ψ(s)| describing the system in the 
ground state, which can be written as

ρ(s) =

⎡
⎢⎢⎢⎣

a b b . . . b
b c c . . . c
...

...
...

. . .
...

b c c . . . c

⎤
⎥⎥⎥⎦ , (8)

where b = √
a(s)c(s). As we trace out n′ qubits of the system, the 

resulting partial density matrix ρ ′(s) will be given by

ρ ′(s) =

⎡
⎢⎢⎢⎣

a′ b′ b′ . . . b′
b′ c′ c′ . . . c′
...

...
...

. . .
...

b′ c′ c′ . . . c′

⎤
⎥⎥⎥⎦ , (9)
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