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A Green’s function (GF) method is developed for interpreting scanning probe microscopy (SPM) 
measurements on new two-dimensional (2D) materials. GFs for the Laplace/Poisson equations are 
calculated by using a virtual source method for two separate cases of a finite material containing a 
rectangular defect and a hexagonal defect. The prescribed boundary values are reproduced almost exactly 
by the calculated GFs. It is suggested that the GF is not just a mathematical artefact but a basic physical 
characteristic of material systems, which can be measured directly by SPM for 2D solids. This should 
make SPM an even more powerful technique for characterization of 2D materials.

Published by Elsevier B.V.

1. Introduction

Since the advent of graphene [1], many new [2] two-dimen-
sional (2D) materials have been synthesized and tested. These 
include silicene [3–6], germanene [3], stanene [7], phosphorene 
[8], geometrically-modified graphene [9,10], hexagonal boron ni-
tride [11], and single-layer transition-metal dichalcogenides (i.e., 
MoS2 [12], MoSe2 [13], WS2 [14], WSe2 [15], and PtSe2 [16]), 
which have received much attention in recent years. These new 
materials have the potential to revolutionize the materials indus-
try due to their size and unique electronic, mechanical, thermal, 
and photonic properties [12,14,15,17,18] (for reviews and other 
references, see [19,20]). Because of their low dimensionality, small 
structural changes can significantly affect the transport and other 
physical properties of 2D materials [9,10]. It is therefore impor-
tant to develop accurate and fast characterization techniques for 
these materials, supported by robust and computationally efficient 
mathematical models. Such techniques are needed to accelerate 
the industrial application of these materials.

Scanning tunneling microscopy (STM) is a scanning probe mi-
croscopy (SPM) technique that uses raster scanning and tunnel-
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ing electrons to map out the nanoscale topography and electronic 
properties of conductive surfaces [21]. In addition to the conven-
tional atomic force microscopy (AFM), SPM includes new powerful 
techniques such as scanning electrostatic microscopy (SESM) and 
scanning thermal microscopy (SThM). In a typical SPM experiment, 
one measures the response of the sample to a point probe or a 
distribution of point probes. Interestingly, that is exactly the math-
ematical definition of the Green’s function – response to a point 
probe [22]. A Green’s function (GF) based method is, therefore, the 
natural choice for modeling SPM experiments on 2D materials.

Normally GF is understood to be a mathematical technique that 
is used for solving operator equations. In fact, GF is more than that. 
An operator in physics represents a process of measurement. The 
GF corresponding to an operator is the inverse of that operator 
and gives the response [23] of the material to the measurement 
process represented by that operator. The GF is independent of the 
probe and, operating on the probe, it gives the result of that mea-
surement. If, instead of calculating it through various mathematical 
steps and physical assumptions, the GF can be directly measured, 
it should prove to be a valuable tool for physical characterization 
as well as mathematical modeling of materials.

Here we suggest that the GF is a physical entity that contains 
all the information about the material as modeled by the corre-
sponding operator equation. At least for a 2D material, the GF can 
be measured directly by SPM. The measurability of the GF is par-
ticularly useful because, in principle, it can be used for modeling 
other related characteristics of that material. This is an interesting 
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example of an apparently mathematical artefact becoming a tool 
for experimental characterization of 2D materials.

Of course even for 3D materials, SPM yields response to a point 
force. However, SPM can directly measure the response only at 
the same surface at which the probe is applied. For ordinary 3D 
solids, the physical characteristics of a surface are, in general, dif-
ferent than the bulk of the material. Moreover, many other factors 
contribute to the surface response such as interlayer interactions, 
presence of randomly distributed point defects as well as topo-
logical and extended defects such as dislocations, stacking faults, 
etc. All these contributions make it very difficult to deconvolve the 
measured response to extract useful values of the GF. The availabil-
ity of single layer 2D solids has now made it possible to actually 
measure the GF.

In this paper we describe a GF method for solving the Pois-
son equation, or its homogeneous part the Laplace equation, in 2D 
materials. The Poisson equation gives the distribution of the elec-
tric field or voltage in electrostatic experiments such as in SESM 
or the temperature field in SThM. The Poisson equation is a highly 
studied equation because of its wide range of applications. Its an-
alytical solution is possible only for fairly simple geometries and 
infinite solids [24]. For any realistic geometry or for finite solids, 
one has to resort to partial or fully numerical techniques.

A major advantage of the GF method is that it is partly an-
alytic. We start with an analytical form of the free-space GF for 
a perfect infinite solid and then impose suitable boundary and/or 
continuity conditions to simulate finite boundaries and defects. We 
use the virtual source (VS) method for satisfying the prescribed 
boundary conditions. The VS method is analogous to the virtual 
force method, which was used previously in elastostatics for planar 
boundaries [25–27]. In this paper, we have adopted this method to 
boundaries of arbitrary shapes. The test of the reliability of a so-
lution of any boundary value problem is how well the boundary 
conditions are satisfied. We find that the calculated GF satisfies 
the boundary conditions almost exactly.

The material system that we consider in this paper is a per-
fectly flat 2D finite material containing a single rectangular or 
hexagonal defect of finite size. The VS method is very general and 
is applicable to material systems containing any number of defects. 
Further, the defects can be of arbitrary shapes and sizes. A de-
fect may be an antidot or an inclusion of a different material as 
used for functionalization. An antidot in a 2D material is a hole, 
which corresponds to a void in a 3D material. Antidots [9,10,28] in 
graphene are of strong topical interest because they can be engi-
neered to tune the electric and thermal characteristics of the ma-
terial. Various designs and arrays of antidots and inclusions have 
been proposed in the literature for making efficient thermoelectric 
devices for energy harvesting and energy conversion [29]. For all 
such applications, we need to solve the Poisson/Laplace equation, 
which is the objective of the present paper.

2. Mathematical formulation

Perhaps the most common numerical technique used for solv-
ing the Poisson/Laplace equation is the finite element method 
(FEM). The FEM is an extremely versatile and powerful tech-
nique but computationally rather expensive. It requires inversion 
of Nv × Nv matrices where Nv is the number of all the points 
in the bulk of the material. It is necessary to solve the equation 
numerically at all the points in the solid even if the results are 
needed only in a small region, which is often the case.

An alternative to the FEM for linear problems is the bound-
ary element method (BEM), which involves integrals only near the 
boundaries or discontinuities in the solid where the boundary con-
ditions are prescribed [26]. The BEM requires inversion of Ns × Ns

matrices where Ns is the number of points at the boundary (or 

surface in 3D systems). Since Ns is much smaller than Nv , the 
BEM requires inversion of matrices of much lower dimensions as 
compared to the FEM. However, it does not necessarily have a ma-
jor advantage over the FEM in terms of computational efficiency. 
This is because the matrices to be inverted in the FEM are large 
but sparse, whereas in the BEM they are smaller but dense. Many 
other methods [25–27,30,31] for calculating the GF are available in 
the literature such as those based upon integral transforms, com-
plex variables, Dyson’s equation, etc. These methods are useful for 
specific geometries.

We use the GF method, which is intimately linked with the 
BEM. The BEM uses free-space GF as the starting solution and the 
Green’s or the Gauss theorem with suitable interpolation functions 
to satisfy the prescribed boundary conditions. For an excellent dis-
cussion of the GF and its mathematical properties along with its 
applications to various materials systems of interest, see the re-
cent monograph by Pan and Chen [32].

In our GF method, we obtain the final GF directly by using 
a suitable distribution of VSs. The final GF incorporates all the 
boundary conditions and gives the total response of the material 
system. Thus, it includes the effect of any defects such as surfaces, 
boundaries, and discontinuities associated with various defects in 
the material. The final GF is also called the defect GF in contrast 
to the free infinite space GF, which is called the perfect GF. In the 
interest of brevity in this paper, unless stated otherwise, GF will 
refer to the final GF.

The VS method is somewhat similar to the method of images 
[24] in electrostatics. The VSs are applied just outside the bound-
ary of the solution domain. The boundary conditions are specified 
on a contour just inside the boundary. Thus, the contour at which 
the boundary conditions are prescribed is just inside the solution 
domain whereas the contour at which the VSs are applied, are 
just outside the solution domain. This ensures that the VSs give 
a solution of the homogeneous equation. Further, the differential 
separation between the loci of the VS and the boundary values 
avoids the characteristic singularity in the GF at a point where the 
source and the field points coincide.

The VS method is rapidly convergent and numerically stable. 
The main computational cost of our GF method is in the calcula-
tion of the VSs. However, the VSs are in modular form and can be 
stored for later use. This can reduce the subsequent computational 
cost. One computational advantage of our GF method is that we 
need to numerically solve the main equation only near the bound-
aries or the discontinuities. In the bulk of the solution domain, the 
solution is given in a semi-analytic form in terms of the GF and/or 
its derivatives and the VSs. The most important advantage of the 
GF method is, as mentioned before, that it gives the response of 
the material to a point electrostatic or thermal probe, which is di-
rectly measurable by SPM.

Fig. 1 shows the geometry of the 2D material that we model. 
We neglect the discrete atomistic structure of the material so our 
calculations are valid at length scales larger than the atomistic di-
mensions. This is consistent with the continuum approximation 
inherent in the Laplace/Poisson equation. This allows us to neglect 
the zig-zag structure of the edges and any ripples or unevenness 
at the surface. Thus, the treatment given here is applicable to 
graphene as well as other 2D materials beyond graphene.

We consider two separate types of defects – rectangular 
(Fig. 1(a)) and hexagonal (Fig. 1(b)). The shape of the host solid in 
both the cases is assumed to be a square. We choose a 2D Carte-
sian frame of reference. The coordinate axes are assumed to be 
parallel to the outer edges of the solid with the origin at the cen-
ter as shown in Fig. 1. We denote the position vector of a point by 
r (written in bold) and its X and Y coordinates by the subscripts 1 
and 2. Thus r1 = X and r2 = Y . The magnitude of a vector r is de-
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