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The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap 
represents a quantum Hall state whose quantized conductivity is characterized by topological invariants 
known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales 
in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method 
used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set 
of critical points that separates orderly patterns of both positive and negative Cherns that appear as a 
fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection 
subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that 
the critical points are identified with the Van Hove singularities that exist at every band center in the 
butterfly landscape.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Discovered by Belgian physicist Leon Van Hove in 1953, Van 
Hove singularities are singularities in the density of states (DOS) 
crystalline solid [1]. These singularities are known to be respon-
sible for various anomalies provided the Fermi level lies close to 
such a singularity. Electronic instabilities at the crossing of the 
Fermi energy with a Van Hove singularity in the DOS often lead 
to new phases of matter such as superconductivity, magnetism, or 
density waves [2].

A two-dimensional electron gas (2DEG) in a square lattice pro-
vides a simple example of Van Hove singularities in the energy 
dispersion of a crystal. For a tight binding model of a square lat-
tice the energy dispersion is given by,

E = −2 J [cos kxa + cos kya] (1)

Here �k = (kx, ky) is the wave vector in the first Brillouin zone, 
a is the lattice spacing of the square lattice and J is the nearest-
neighbor hopping parameter which defines the effective mass me
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of the electron on the lattice by the relation J = h̄2

2mea2 . This sin-
gle band Hamiltonian has band edges at E = ±4 J . It can be shown 
that the DOS at the band edges approaches a constant equal to 

1
4πa2h̄2 . However, it diverges at the band center as DOS ≈ ln J

E . Such 
a divergence is an example of a Van Hove singularity. Fig. 1(a) 
shows the energy contours in (kx, ky) plane, where the almost 
free-electron concentric circles are transformed into a diamond 
shape structure that corresponds to saddle points in the energy 
surface. We note that the lattice structure is essential for the exis-
tence of Van Hove singularities. Van Hove singularities have been 
given a topological interpretation in terms of a switching of elec-
tron orbits from electron like to hole like [3]. It is worthwhile 
mentioning that the topological properties of Van Hove singular-
ities in lattices without magnetic fields have been known since 
long time ago using a theory developed by Morse [4] and applied 
to solid state physics by J.C. Phillips [5].

In this paper we investigate the Van Hove anomalies of a 2DEG 
in transverse magnetic fields. Such a system describes all phases 
of non-interacting electrons as one varies the chemical potential 
and magnetic field. The phase diagram, known as the Hofstadter 
butterfly [19] represents various quantum Hall states, each char-
acterized by a quantum number, the Chern number, that has its 
roots in the nontrivial topology of the underlying Hilbert space [9]. 
Several aspects of this quantum Hall effect are well understood 
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Fig. 1. (a) Contour plot of the energy E in the (kx, ky) plane, illustrating the saddle character of the band center for a 2DEG on a square lattice. (b) Shows the corresponding 
band as a function of kx . (c) Shows the spectrum for small magnetic flux φ = 0.1. Landau levels correspond to the horizontal flat bands. In (d) we show a blow up of (c) 
near the band center, illustrating the deviation from the Landau level picture near the band center that hosts a Van Hove singularity. In (b), (c) and (d), the colors represent 
different values of ky .

[2] and recently there has been a reemergence of the field due to 
the first experimental observation of the Hofstadter butterfly [10], 
leading to perform band-structure engineering [11]. Many of these 
properties have been measured in graphene over a substrate, since 
strain in graphene acts as a pseudo magnetic field [12–14]. Also, 
there is an interest in artificial systems which share the same phe-
nomenology, like ultra cold bosonic atoms [15].

The key result of this paper is the characterization of Van Hove 
singularities that are nested in the topological hierarchical pattern 
of the butterfly spectrum. We show that in the two-dimensional 
energy-flux space, every vicinity of a Van Hove consists of inter-
lacing sequences of Chern numbers. In other words, the Van Hove 
singularities separate different topological sequences. To achieve 
this goal, we calculate Chern numbers in the neighborhood of Van 
Hove singularities, facilitated by simple rules that are derived for 
determining the entire topological map of the butterfly fractal at 
all scales.

Notice that there are other previous classic works that stud-
ied in detail the layout of the Hofstadter butterfly [16,17] and its 
relationship with the density of states, however, the fine structure 
around Van Hove singularities has not been tackled previously. Fur-
thermore, our analysis begins with a simple geometrical approach, 
based on a method to treat the structure of quasicrystals, that sets 
the stage for determining the Chern numbers of all the gaps and its 
associated fine structure. Although this functional relationship is 
known [18], our geometrical approach allows to find it in a simple 
way. It also provides a powerful, intuitive and simple geometrical 
interpretation for the more complicated number theory approach 
[17]. In fact, we will show that the fine structure of the Hofstadter 
butterfly can be explained in terms of a simple tilting of the pro-
jection subspace used in the cut and projection method.

It is the orderly patterns of topological integers that character-
ize the fine structure that gets linked to the Van Hove anomalies of 
a two dimensional crystalline lattice in a magnetic field. Moreover, 
a very recent study of the 2DEG when subjected to a weak mag-
netic field, revealed the importance of Van Hove singularities in 
inducing changes in localization characteristics of the system [6]. 

In a continuum system, that is, in the absence of any lattice struc-

ture, the magnetic field B introduces a magnetic length lB =
√

�0
2π B

(where �0 is the magnetic flux), reincarnation of the cyclotron 
radius of the corresponding classical problem. In this limit, the en-
ergy spectrum consists of equally spaced harmonic oscillator levels 
known as the Landau-levels. Interestingly, in a lattice with weak 
magnetic flux, the Landau level picture breaks down near the band 
center as illustrated in the Fig. 1. As we will discuss, this is due to 
the saddle points of the energy dispersion surface. This is in sharp 
contrast to the parabolic dependence of the energy near the band 
edges that leads to the Landau levels.

The model system that we study here consists of (spinless) 
fermions in a square lattice. Each site is labeled by a vector r =
lx̂ +mŷ, where l, m are integers, and x̂ ( ŷ) is the unit vector in the 
x (y) direction. The tight binding Hamiltonian has the form

H = − J x

∑
r

|r + x̂〉〈r| − J y

∑
r

|r + ŷ〉ei2π lφ〈r| + h.c. (2)

Here, |r〉 is the Wannier state localized at site r. J x ( J y) is the 
nearest neighbor hopping along the x (y) direction. With a uniform 
magnetic field B along the z direction, the flux per plaquette, in 
units of the flux quantum �0, is φ = −Ba2/�0. The field B gives 
rise to the Peierls phase factor ei2π lφ in the hopping.

Within the Landau gauge, the above Hamiltonian has been en-
gineered in cold atom experiments [7]. Using this gauge, the vector 
potential is given by Ax = 0 and A y = −φx resulting in a Hamil-
tonian that is cyclic in y. Therefore, the eigenstates of the system 
can be written as �l,m = eikymψn where ψl satisfies the Harper 
equation [19]

ψl+1 + ψl−1 + 2λ cos(2π lφ + ky)ψl = Eψl. (3)

Here l (m) is the site index along the x (y) direction and λ =
J y/ J x . For a rational φ = p/q, where p and q are relatively 
prime integers, the solutions are periodic resulting in the condi-
tion ψl+q = exp(kxqa)ψl .

At the rational flux φ = p/q, the energy spectrum has q − 1
gaps, although for even q the central gap is closed. These spectral 
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