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This Letter studies the exponential stability for a class of neural networks (NNs) with both discrete and
distributed time-varying delays. Under weaker assumptions on the activation functions, by defining a
more general type of Lyapunov functionals and developing a new convex combination technique, new
less conservative and less complex stability criteria are established to guarantee the global exponential
stability of the discussed NNs. The obtained conditions are dependent on both discrete and distributed

delays, are expressed in terms of linear matrix inequalities (LMIs), and contain fewer decision variables.

PACS: Numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed
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1. Introduction

Now, neural networks (NNs) are widely studied, because of
their immense potentials of application prospective in a variety of
areas, such as signal processing, pattern recognition, static image
processing, associative memory, and combinatorial optimization. In
order to deal the moving images processing, delayed neural net-
works were introduced [1]. Due to the finite speed of information
processing, the existence of time delays frequently causes oscil-
lation, divergence, or instability in NNs. Therefore, the stability
problem of delayed neural networks has become a topic of great
theoretic and practical importance in recent years [2-10].

NNs usually have a spatial extent due to the presence of a
multitude of parallel pathways with a variety of axon sizes and
lengths [11]. Thus, there will be a distribution of conduction ve-
locities along these pathways and a distribution of propagation de-
lays [12]. Recently, there has been a growing interest in the study
of neural networks with discrete and distributed delays. In [13],
NNs with discrete and distributed constant delays was investigated,
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several sufficient conditions for ensuring the existence and global
asymptotical stability of the equilibrium point were derived, and
these results were further extended to uncertain NNs in [14].

For neural networks with discrete and distributed time-varying
delays, [15] discussed the robust asymptotic stability and the con-
straint d(t) < 1 on the discrete time-varying delay was relaxed
by using Lyapunov theory and Leibniz-Newton formula. However,
the activation functions in [15] were assumed to be monotonically
nondecreasing. [16] assumed the activation functions to satisfy a
global Lipschtiz condition, which implies that the activation func-
tions are not necessary to be monotonically nondecreasing, and a
delay-dependent exponential stability condition was derived with-
out considering the differentiability of delays. [17] proposed an
exponential stability criterion by constructing an augmented Lya-
punov functional, where the discrete delay d(t) must be differen-
tiable and d(t) < 1. Clearly, such constraints on the delay term d(t)
and the activation functions were relatively strong. In addition, it
should be pointed out that the stability results given in [15,16] and
[17] were conservative in some extent, and it leaves some room for
further improvement.

In this Letter, the exponential stability for a class of NNs with
both discrete and distributed time-varying delays is also inves-
tigated. Unlike the existing works, a new convex combination
technique is developed based on the inequality ﬁ + d+d([) >3
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(0 < d(t) < d). Combining with the defining of new Lyapunov func-
tionals and a delay decomposition method, new delay-dependent
exponential stability criteria are derived in terms of linear ma-
trix inequalities (LMIs). Meanwhile, the activation functions here
are assumed to satisfy a sector bound condition, so the consid-
ered NNs are more general since the activation functions may be
neither monotonic nor differentiable. It is shown that the newly
obtained results are less conservative and more applicable than
the existing corresponding ones. Since fewer decision variables are
involved, the newly obtained results are also less complex. Some
numerical examples will be given to show the effectiveness of the
main results.

Notation: Throughout this Letter, a real symmetric matrix P >
0(>= 0) denotes P being a positive definite (positive semi-definite)
matrix, and A > B(A>B) means A— B > 0(=0). | - || is the Eu-
clidean norm in R". If A is a matrix, denote by ||A| its operator
norm, ie., |A|l = supjy=1{IAx|} = VAmax(AT A), where Amax(A)
(respectively, Amin(A)) means the maximum (respectively, mini-
mum) eigenvalue of A. I is used to denote an identity matrix with
proper dimension. Matrices, if not explicitly stated, are assumed to
have compatible dimensions. The symmetric terms in a symmetric
matrix are denoted by .

2. Problem formulation and preliminaries

Consider the following neural network with both discrete and
distributed delays:

x(t) = —Cx(t) + Af (x(t)) + Bf (x(t — d(1)))

t

+D / f(x(s))ds+ ], t=0, (1)
t—1(t)
where x(-) = [x1(:), x2(-), ..., %:(-)]T € R" is the neuron state vec-

tor, f(x() =[f1(x1()), f2(x2()), ..., fa(*a(:))]T € R" denotes the
neuron activation function, and J =[J1, J2,..., Ja]T € R" is a con-
stant external input vector. C = diag{cq,...,cp} with ¢; >0 (i =
1,2,...,n), and A, B, D are the connection weight matrix, the dis-
cretely delayed connection weight matrix and the distributively
delayed connection weight matrix, respectively. d(t) and t(t) de-
note the discrete time-varying delay and the distributed time-
varying delay, respectively, and are assumed to satisfy 0 <d(t) <d,
0 < t(t) < 1, where d and T are positive constants. The initial vec-
tor ¢ (t) is bounded and continuously differential on [—h, 0], where
h =max{d, t}.

Similar to [19], the following assumptions will be made
throughout the Letter.

(H1). The activation functions f;(-) (i=1,2,...,n) are bounded.
(H2). There exist some constants [, ll.Jr (i=1,2,...,n) such that

li_gfi(x%fii(wglﬁ, VX,y€R, x#£y. (3)

Remark 1. The above assumption (H2) on the activation function
was originally proposed in [18,19], and widely used in many pa-
pers. In [15], the activation functions fi(:) (i=1,2,...,n) are
required to satisfy f;(0) =0 and [; = 0, while the activation
functions fi(-) (i=1,2,...,n) satisfy global Lipschitz conditions
in [16]. It is clear that the activation functions satisfying the sector
bound condition (3) is more general than the corresponding ones
in [15] and [16].

Assume that x* = [xT,x’Z‘,...,x,’;]T is an equilibrium point of
system (1), by choosing the coordinate transformation z(-) = x(-) —
x*, (1) is changed into the following error system

2(t) = —Cz(t) + Ag(z(t)) + Bg(z(t — d(1)))
t

+D / g(z(s)) ds, (4)
t—1(t)
where z(-) = [z1(-), 22(), ..., zz()]T is the state vector of the

transformed  system, g(2) = [£1(21(), £2(22()), ..., gn(Za(:N]"
and gi(zi(")) = fi(zi() + x7) — fi(x{) (i=1,2,...,n). Then, the
functions g;(-) (i=1,2,...,n) satisfy the following condition:
(z:

I < —gli,-l) <IF. g(0)=0, Vz 0. 5)

In this Letter, we analyze the stability of system (4)-(5), and
new global exponential stability criteria which are less conserva-
tive and less complex than the existing ones will be proposed.
Undoubtedly, the newly proposed stability criterion will be more
applicable since the activation functions are allowed to be more
general.

To obtain our main results, the following definition and lemma
are necessary.

Definition 1. The equilibrium point 0 of system (4) is said to be
globally exponentially stable, if there exist scalars k >0 and 8 > 0
such that

|z < pe™ sup |z(s)|, Vvt>o, (6)
h<s<0

TR

and k is called the exponential convergence rate index.

Lemma 1. The following inequalities are true:
zi(t)

0< / (gi(s) —I7s)ds < (gi(zi(D) — 17 zi(1)) zi (1), (7)
0
zi(t)

0< / (IFs — 29) ds < (IFz1(0) — g (210))z ©. (8)
0

Proof. From (5), it yields that

. B lji- _ o
ogg'(s) ,s’ < ;S gl(S)’ Vs £0,
s S
this implies that
zi(t) zi(t)
0< / (gi(s) —17s)ds, 0< f (Ifs — gi(s)) ds.
0 0

From (3), for any y #s, it gets that
&) =17 y)—(gi(s) —1s)
y—s
_fiy+x) = fils+x) =17 (y —9)
= Vs

20,

this implies that g;(y) — Iy is monotonically nondecreasing re-
spect to y. So, the right inequality in (7) is true.

Similarly, 117L y — gi(y) is also monotonically nondecreasing re-
spect to y and the right inequality in (8) is true.

This completes the proof. O
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