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Quantum teleportation, which depends on entangled states, is a fascinating subject and an important 
branch of quantum information processing. The present work reports the use of a dipolar spin thermal 
system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation 
of Bell’s inequality and thermal entanglement, measured by negativity, shows that for the present model 
all entangled states, even those that do not violate Bell’s inequality, are useful for teleportation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum mechanics is characterized by its counter-intuitive 
concepts as, for example, quantum entanglement, whose impor-
tance in modern physics has stimulated intensive research of sev-
eral quantum systems [1]. Such quantum correlation implies that 
the subsystems cannot be thought of as individual objects but as a 
single inseparable quantum system, i.e., their quantum state can-
not be factorized into single states. In its strongest form, when 
the components of the system are far apart, this correlation im-
plies that the properties of the system are distributed among the 
parts and this characterizes the observation of non-local phenom-
ena certified by violation of Bell inequalities [2], which cannot be 
explained by a classical theory.

In terms of quantum information purposes, quantum entangle-
ment is an important resource and, consequently, its quantification 
is fundamental. While entanglement for pure states is completely 
understood and equivalent to non-locality [2], for mixed states 
many forms to quantify entanglement were proposed and it was 
shown that it is not always equivalent to non-local properties [3]. 
Still in the case of mixed states, for some bipartite systems several 
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measures, such as negativity, are available to analytically quantify 
entanglement [4].

Concerning usefulness of entangled states, it was showed by 
Bennett et al. [5] that a bipartite maximally entangled particle 
state can be used as communication channel to promote the quan-
tum teleportation of a unknown state of a third qubit. Such pro-
tocol can be seen as a corner stone of quantum information pro-
cessing because it was one of the first to show the usefulness of 
quantum entanglement for quantum communication. In that work 
the authors noted that states that are not maximally entangled can 
still be used for teleportation but with reduced efficiency/fidelity. 
Nowadays, this communication protocol is known as standard tele-
portation protocol.

Regarding this procotol, one question was asked: Is non-locality 
needed for teleportation? The answer is no. There are some en-
tangled mixed states that do not violate a Bell inequality that still 
can be used as quantum communication channel for teleportation 
of an unknown state [6,7]. Also, it was showed that such protocol 
with mixed states as resource is equivalent to a generalized depo-
larizing channel [8]. This is an important result because stabilishes 
that the quantification of the success of teleportation for this pro-
tocol can be seen as a quantification of entanglement.

Although very useful, entanglement is a very fragile quantum 
property. The disappearance of this quantum correlation can be 
caused by different kinds of sources acting on the system like 
temporal evolution [9–13] or variation of temperature [14–21] in 
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equilibrium states. So, the understanding of such mechanisms and 
how they act over the system destroying entanglement is very im-
portant in order to keep this quantum advantage of protocols. It is 
important to note that the case of thermal entanglement, i.e., the 
entanglement of quantum systems at finite temperature, is one of 
the links between quantum information and condensed matter ar-
eas [22], and consequently, it has been extensively studied by both, 
theoretical and experimental physicists [23–31] since possible con-
nections to the production of quantum devices based in current 
technology.

In this work we report the effects of a dipolar interaction be-
tween two spins on their degree of entanglement and nonlocality. 
Also, considering such model a quantum communication channel, 
we analyze the effects of such interaction over its communica-
tion capacity through the teleportation fidelity. Such interaction 
arises due to the influence of the magnetic field created by one 
magnetic moment on the site of another magnetic moment [33]. 
We begin with the model of dipolar interaction and show that, for 
the case of two coupled spins 1/2, whatever is the ground state, 
we have the presence of entanglement. For this model we certify 
non-locality through CHSH inequality and quantify the amount of 
entanglement using negativity, verifying that our model presents 
some degree of non-locality and entanglement at a given cou-
pling parameters � and ε . In addition, we show how the mag-
netic anisotropies can influence the fidelity of teleportation, which 
is based on the degree of entanglement of the quantum states 
involved in the process. We calculate the averaged teleportation 
fidelity and verify that this quantity has a similar behavior of 
negativity and violation of Bell’s inequality. As expected, such pro-
cess successfully occurs without need of non-locality of quantum 
states [7,34–37].

2. The model

The dipolar interaction arises from the magnetic field created 
by a magnetic moment of a spin �μ = −μB g�S [33], where μB is 
the Bohr’s magneton and g the giromagnetic factor, on the site of 
another spin and is represented by the Hamiltonian

H = −1

3
�S T

1 · ↔
T · �S2, (1)

where 
↔
T = diag(� − 3ε, � + 3ε, −2�) is a diagonal tensor,

�S j = {Sx
j, S

y
j , S

z
j} is the spin operator, and � and ε are the dipolar 

coupling constants between the spins. These parameters are re-
lated to the spatial and relative orientation of the spins [33]. The 
quantum version of the dipolar interaction has been ‘quantizing’ 
by replacing the magnetic moment by the angular momentum op-
erator (see details in Ref. [33]); but the meaning of the physical 
parameters remains the same. In few words, � is the axial param-
eter (lies on the diagonal of the Hamiltonian operator), and ε is 
the rhombic one (lies on the off-diagonal elements of the Hamil-
tonian operator). These rule the interaction strength and relative 
orientation between the angular momenta.

That Hamiltonian can describe a pair of spin 1/2 particles and 
can be written in a matrix form

H = 1

6

⎛
⎜⎜⎝

� 0 0 3ε
0 −� −� 0
0 −� −� 0

3ε 0 0 �

⎞
⎟⎟⎠ , (2)

with the eigenvalues and eigenvector given by

E�− = 0, E�+ = −�/3, E�∓ = (� ∓ 3ε)/6, (3)

|�±〉 = 1√
2
(|01〉 ± |10〉), |�±〉 = 1√

2
(|00〉 ± |11〉). (4)

Note that the eigenvectors are the four Bell states, the well known 
family bipartite entangled pure states. This Hamiltonian can be 
written through the spectral decomposition in terms of its states, 
i.e., H = ∑

αEα |α〉〈α|, where α ∈ {�+, �−, �+, �−}.
Let’s consider the system at thermal equilibrium at a given tem-

perature T be described by the canonical ensemble
ρ = Z−1e−H/kB T . Here H is the Hamiltonian of the system, kB the 
Boltzmann’s constant and Z = Tr(e−H/kB T ) is the partition func-
tion. Since ρ is a thermal density operator, the entanglement 
on this state is called thermal entanglement [38–40]. From using 
Eq. (2), we obtain the density operator,

ρ =

⎛
⎜⎜⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ23 ρ22 0

ρ14 0 0 ρ11

⎞
⎟⎟⎠ , (5)

where

ρ11 = 1

Z
e−β�/6 cosh

(
βε

2

)
,

ρ22 = 1

Z
eβ�/6 cosh

(
β�

6

)
,

ρ23 = 1

Z
eβ�/6 sinh

(
β�

6

)
,

ρ14 = − 1

Z
e−β�/6 sinh

(
βε

2

)
(6)

and

Z = 2eβ�/6 cosh

(
β�

6

)
+ 2e−β�/6 cosh

(
βε

2

)
. (7)

The parameters � and ε can be experimentally determined since 
they are within the partition function Z and, consequently, can be 
related to the thermodynamical quantities like magnetic suscepti-
bility and heat capacity.

The density operator can also be written in terms of Bell states 
as ρ = ∑

α pα |α〉〈α|, where pα = Z−1e−Eα/kB T is the Boltzmann 
weight. Note that the density matrix of the system is expressed in 
terms of the four Bell states, which are not possible to be writ-
ten as a convex sum of the original spin states. Thus, the system 
will always present some degree of entanglement whatever is the 
groundstate. This will not happen only when two or more of these 
states present the same occupation probability. In that case the 
ground state will be a mixture that produce a separable state.

Generally speaking, the density operator can be written in the 
Fano form [41]

ρ = 1

4

⎡
⎣I⊗ I+�r · �σ ⊗ I+ I⊗ �s · �σ +

∑
i, j

ci jσi ⊗ σ j

⎤
⎦ , (8)

where I is the 2 × 2 identity operator, σi are the Pauli matrices, 
r j = 〈σ j ⊗ I〉, s j = 〈I ⊗ σ j〉, and ci j = 〈σi ⊗ σ j〉 are spin–spin corre-
lation functions. Considering Eq. (5), the Fano form reduce to

ρ = 1

4

(
I⊗ I+

∑
i

ciσi ⊗ σi

)
, (9)

where r j = 0, s j = 0, ci j = δi jci , and

c1 = 2

Z

[
eβ�/6 sinh

(
β�

6

)
− e−β�/6 sinh

(
βε

2

)]
,

c2 = 2

Z

[
eβ�/6 sinh

(
β�

6

)
+ e−β�/6 sinh

(
βε

2

)]
,

c3 = 2

Z

[
−eβ�/6 cosh

(
β�

6

)
+ e−β�/6 cosh

(
βε

2

)]
. (10)



Download English Version:

https://daneshyari.com/en/article/1860582

Download Persian Version:

https://daneshyari.com/article/1860582

Daneshyari.com

https://daneshyari.com/en/article/1860582
https://daneshyari.com/article/1860582
https://daneshyari.com

