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Conventional quantum mechanics describes a pre- and post-selected system in terms of virtual 
(Feynman) paths via which the final state can be reached. In the absence of probabilities, a weak 
measurement (WM) determines the probability amplitudes for the paths involved. The weak values 
(WV) can be identified with these amplitudes, or their linear combinations. This allows us to explain 
the “unusual” properties of the WV, and avoid the “paradoxes” often associated with the WM.

© 2016 Published by Elsevier B.V.

1. Introduction

Ever since its inception in 1988 [1] the subject of the so-called 
quantum weak values (WV) remained a controversial topic (for 
early critique see [2,3]). In more recent developments, the authors 
of [4] put forward a much debated [5,6] proposal for generalis-
ing the WV to classical theories, while Steinberg [7] suggested the 
use of weak measurements (WM) for probing certain “surreal” el-
ements of quantum physics. A few years ago, the authors of [8]
have demonstrated experimentally how WM can be used to (in-
directly) measure the system’s wave function. One might feel that 
a clarification of what actually happens in a WM is in order, and 
the purpose of this paper is to provide one based on the concepts 
conventionally used in quantum theory.

The history of the WV goes back to Feynman, who used the 
mean value of a functional, averaged with the probability ampli-
tudes, to illustrate certain aspects of quantum motion [9]. Feynman 
averages naturally arise, for example, in an attempt to measure 
the time spent by a tunnelling particle in the barrier [10]. The 
WM, designed to perturb the measured system as little as possible, 
were later studied in terms of Krauss operators and the POVM’s, 
and found applications in the analysis of continuous measurements 
[11–13]. The subject gained in popularity when the authors of [1]
pointed out certain “unusual” properties of the WV. “WM elements 
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of reality” were introduced in [14], which elevated the discussion 
to a yet higher philosophical level. Subsequent attempts to bet-
ter understand the properties of the WV were made, e.g., in the 
analysis of the “complex probabilities” in [15]. General reviews of 
the subject can be found, for example in Refs. [16–18]. In a more 
recent review of the practical aspects of WV [19] the authors char-
acterised the WV as “complex numbers that one can assign to the 
powers of a quantum observable operator Â using two states, an initial 
state |i〉..., and a final state | f 〉...” This still leaves open the original 
question posed by the authors of [1]: what, if anything, the WV 
tell us about the intermediate state of a pre- and post-selected 
system?

We will answer it in the following way: in the case of interme-
diate measurements made on a pre- and post-selected system one 
must consider the system’s histories referring to at least three dif-
ferent moments of time. Such histories, in general, interfere, and 
are conventionally characterised by probability amplitudes [20]. 
A WM destroys coherence between the histories only slightly and, 
in the absence of probabilities, measures the corresponding prob-
ability amplitudes or, more generally, various combinations of its 
real and imaginary parts. We will show that this simple observa-
tion allows one to avoid the notions of “anomalous” weak values 
[1,4], quantum system “being at two different places at the same 
time” [21], “photons disembodied from its polarisation” [22,23], 
or violation of Einstein’s causality in classically forbidden transi-
tions [24]. For consistency, we will need to reproduce some of the 
known results, and we will try to do it in the briefest possible 
manner in the following Sections.
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Fig. 1. (Colour online.) A system in a 5 dimensional Hilbert space can reach the final 
state |φ〉 via five virtual paths {i} with probability amplitudes Aφ←ψ

i . An accurate 
measurement of an operator Ŝ = ∑2

i=1 |i〉〈i| − ∑5
i=3 |i〉〈i| with degenerate eigenval-

ues of 1 and −1 creates two real pathways I = {1 + 2} and II = {3 + 4 + 5}, travelled 
with the probabilities ωI and ωII given by Eq. (11). A WM of Ŝ determines the 
difference between relative amplitudes for the virtual paths I and II in Eq. (17), 
αI − αII .

2. Paths, amplitudes, and meters

Following [1] we consider a system in a N-dimensional Hilbert 
space with a Hamiltonian Ĥ . We also consider an arbitrary op-
erator Ŝ , with the eigenvalues Si and the eigenstates |i〉, i =
1, 2, . . . , N . At t = 0 the system is prepared (pre-selected) in a 
state |ψ〉 and at t = T we check if the system is (post-select the 
system) in another state |φ〉. If it is, we will keep the results of 
all other measurements we may make halfway into the transi-
tion, at t = T /2. The probability amplitude for a successful post-
selection is then Aφ←ψ = 〈φ| exp(−i Ĥ T )|ψ〉. Inserting the unity ∑

i |i〉〈i| = 1 at t = T /2 we have

Aφ←ψ =
N∑

i=1

Aφ←ψ

i ,

Aφ←ψ

i ≡ 〈φ|exp(−i Ĥ T /2)|i〉〈i|exp(−i Ĥ T /2)|ψ〉 (1)

This can be seen as a variant of the most basic quantum mechan-
ical problem [20]: a system may reach the final state from the 
initial state via N paths (see Fig. 1). The paths are determined by 
the nature of the quantity Ŝ , and their amplitudes depend on Ŝ , as 
well as on the initial and final states |ψ〉 and |φ〉.

The paths may be either interfering or exclusive alternatives 
[20], depending on what is done at t = T /2. If nothing is done, 
N virtual paths form a single route, and their amplitudes should 
be added as in Eq. (1) [20]. The probability to arrive in φ is then 
given by Pφ←ψ = | ∑N

i=1 Aφ←ψ

i |2. Alternatively, an external meter 
can destroy interference between the paths. If the destruction is 
complete, the paths become real and can be equipped with prob-
abilities |Aφ←ψ

i |2. The probability of a successful post-selection is 
now given by Pφ←ψ = ∑N

i=1 |Aφ←ψ

i |2.

3. Von Neumann measurements with post-selection

To see how interference between the paths shown in Fig. 1
can be destroyed, we employ a von Neumann pointer with the 
position f and the momentum λ, briefly coupled to the system 
around t = T /2 via an interaction Hamiltonian −iδ(t − T /2)∂ f Ŝ
(we use h̄ = 1). The meter is prepared in a state |M〉, such that 
G( f ) ≡ 〈 f |M〉 is a real function which peaks around the origin 
f = 0 with a width 	 f ,

G( f ) = 〈 f |M〉 = (	 f )−1/2G0( f /	 f ), (2)

where G0( f ) = G0(− f ), G0( f )| f |→∞ → 0 and 
∫

G2
0( f )df = 1. Af-

ter a successful post-selection, the meter is in a pure state |M ′〉
(the result is well known, see, for example, [1])

G ′( f ) = 〈 f |M ′〉 =
N∑

i=1

Aφ←ψ

i G( f − Si). (3)

In the momentum space, the meter’s final state is given by

G ′(λ) = 〈λ|M ′〉 = G(λ)

N∑
i=1

Aφ←ψ

i exp(−iλSi), (4)

where G( f ) = (2π)−1/2
∫

G(λ) exp(iλ f )dλ. Repeating the experi-
ment many times we can evaluate the mean pointer position or 
the momentum after the measurement,

〈 f 〉 Ŝ =
∫

f |G( f )|2df /

∫
|G( f )|2df , (5)

and

〈λ〉Ŝ =
∫

λ|G(λ)|2dλ/

∫
|G(λ)|2dλ. (6)

So what can be learnt about the condition of a pre- and post-
selected system at t = T /2? It is convenient to write the operator Ŝ
as a sum of projectors on its eigenstates,

Ŝ =
N∑

i=1

Si P̂ i, P̂ i ≡ |i〉〈i|, (7)

and consider the measurement of a P̂ i for various values of 	 f .

4. Accurate (strong) measurements

Consider first an accurate (strong) measurement of a P̂ i . Since 
	 f determines the uncertainty in the initial setting of the pointer, 
an accurate measurement would require 	 f → 0. If so, we easily 
find that

〈 f 〉strong
i = |Aφ←ψ

i |2/|
N∑

i′=1

|Aφ←ψ

i′ |2 ≡ ωi . (8)

Thus, an accurate meter completely destroys the coherence be-
tween the paths in Fig. 1. Moreover, the measured mean value of 
the projector P̂ i gives the relative frequency with which the real 
path passing through the i-th state is travelled if the experiment 
is repeated many times. It is a simple matter to verify that for an 
arbitrary operator Ŝ with non-degenerate eigenvalues, Si 
= S j , the 
mean value of the pointer position gives the weighted sum of its 
eigenvalues,

〈 f 〉strong

Ŝ
=

N∑
i=1

ωi Si . (9)

This has an obvious classical meaning: if the value of the quantity 
Ŝ on the i-th path is Si , and the i-th path is travelled with the 
probability ωi , then the average value over many trials is given by
the sum (9).

If K and (N − K ) eigenvalues of the measured Ŝ are degenerate, 
e.g., S1 = . . . = S K ≡ S I , S K+1 = . . . = SN ≡ SII , Eq. (3) shows that 
the interference between the paths within each group of eigen-
values is not destroyed by a strong measurement (SM) of Ŝ (see 
Fig. 1). Rather, in accordance with the Uncertainty Principle [20,25,
26] they are combined into two real routes, with amplitudes,

Aφ←ψ
I =

K∑
i=1

Aφ←ψ

i , and Aφ←ψ
II =

N∑
i=K+1

Aφ←ψ

i , (10)

which are travelled with the probabilities
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