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Graphene has intrinsic edge states localized at zigzag edge or lattice defect. Helical boundary states can 
also be established in such a two-dimensional carbon material at the boundary of topological insulator 
(TI) phase realized by the extrinsic Rashba spin–orbital coupling (SOC) in gated bilayer graphene. We 
theoretically investigate the interaction between these two kinds of edge (boundary) states when they 
coexist in a bilayer graphene. We find that this interaction gives rise to some very interesting results. In 
a zigzag edged nanoribbon of bilayer graphene, it is possible that the TI helical state does not localize at 
the TI phase boundary. Instead it moves to the nanoribbon edge even though the SOC is absent therein. In 
a bulk lattice of bilayer graphene embedded with two line defects, the numbers of helical state subbands 
at the two line defects are not equal to each other. In such a case, the backscattering lacking is still 
forbidden since the Kramers pairs are valley polarized.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Edge states play the key roles in explaining many important 
electronic transport properties in two-dimensional (2D) electron 
systems. For instance, the quantum Hall edge states carry the cur-
rent flow to give rise to the perfect Hall conductance plateaux. 
Another typical example of edge state is the so-called helical states 
at an edge of a 2D topological insulator [1,2]. In such states elec-
trons with opposite spins counterpropagate in a given edge. Just 
due to such a helicity of the edge state, a 2D TI is expected to 
exhibit the quantum spin Hall effect.

Shortly after the first experimental acquirement of a graphene 
sample [3], it was observed that bilayer graphene also exhibits re-
markable phenomena [4,5]. In bilayer graphene the bands around 
the Dirac Points are parabolic dispersion relationship, and its 
bandgap can be opened and tuned via a chemical doping [6] or 
externally by applying a gate voltage [7,8]. In spite of the first-
principle calculations shows weak SOC in bilayer graphene [9,10], 
some theoretical studies proposed that bilayer graphene can be 
driven into 2D TI state by gating the bilayer graphene to induce 
a strong extrinsic SOC [11,12]. As a result, the helical state can be 
realized in a controllable way in bilayer graphene at the boundary 
of TI phase.
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As an unusual electronic material, graphene possesses a spe-
cial kind of edge states which does nothing with the magnetic 
field or SOC. Such an edge state always adheres to a zigzag edge 
[13–15] or lattice defects [16] even in an ordinary graphene lat-
tice. Similarly to the helicity of the TI edge state, this intrinsic 
edge state of graphene is valley filtered in the sense that elec-
trons counterpropagate if they have the opposite valley degrees of 
freedom. Moreover, in a gated bilayer graphene such an edge state 
persists in the bulk bandgap as a gapless mode [11], bearing an 
analogy with the TI edge state. Due to the topological proximity 
effect [17], the topological graphene nanoribbon heterostructure 
becomes an expanded TI. It can be predicted that such an inter-
esting phenomenon could arise when the valley filtered edge state 
and the TI helical state coexist in bilayer graphene.

To address this issue, in the present work we firstly consider 
a zigzag edged nanoribbon of bilayer graphene in which a partial 
strip region is assumed in the TI phase driven by a Rashba SOC. 
We find that as the TI phase boundary gets close to the zigzag 
edge of the nanoribbon, the TI helical state becomes to localize at 
the nanoribbon edge, rather than the TI boundary, though no SOC 
appears around the nanoribbon edge. Meanwhile, if we introduce 
a pair of line defects to the bulk lattice of bilayer graphene to in-
duce the valley filtered edge state, instead of the zigzag edges, the 
numbers of gapless modes (helical state bands) localized at the 
opposite boundaries are not equal to each other. There are three 
pairs and one pair of gapless modes at the left and right bound-
aries, respectively. Besides, these helical state subbands are still 
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Fig. 1. Lattice structures of (a) a zigzag edged nanoribbon of bilayer graphene; (b) a bilayer graphene embedded with two parallel line defects. The thin lines connecting the 
nearest-neighbor inter-layer atomic pairs around the line defect indicate the nonzero tight-binding inter-layer hopping energy between these atoms. The shaded strip stands 
for the TI phase driven by the nonzero SOC. d labels the strip width from the TI boundary to the zigzag edge or the line defect.

valley filtered in the vicinity of each valley inside bandgap. Thus, 
the backscattering lacking is still forbidden since the Kramers pairs 
are valley polarized.

2. Structure and Hamiltonian

In the present work, we consider two graphene structures to in-
vestigate the interaction between the different kinds of edge states. 
The first one is a zigzag edged nanoribbon of bilayer graphene 
(ZENR-BG) whose lattice is depicted in Fig. 1(a). In such a nanorib-
bon the Rashba SOC is restricted within the partial region shown 
as the shaded strip in Fig. 1(a). A sufficiently strong Rashba SOC 
can drive this strip into TI phase. Hence the helical states are 
induced at the two opposite boundaries of the TI phase, which co-
exist with the graphene intrinsic edge states localized at the zigzag 
edges of the ZENR-BG. The other structure under our consideration 
is a bulk bilayer graphene lattice embedded with a pair of parallel 
line defects, see Fig. 1(b). Hereafter we abbreviated such a struc-
ture to LD-BG. From Fig. 1(b) we can see that in the lattice of a 
LD-BG, each line defect along y direction consists of the periodic 
repetition of a pair of pentagonal rings plus an octagonal ring in 
each layer. In a LD-BG structure the line defects play a similar role 
as the zigzag edges in a ZENR-BG to induce the valley filtered edge 
(boundary) states. In a monolayer graphene, such a line defect upto 
a millimeter scale has been experimentally observed as the bound-
ary of graphene single-crystalline domains [18]. Besides, it is thus 
far experimentally feasible to control the orientation and size of 
a line defect in graphene lattice [19]. Therefore, it is a reasonable 
anticipation that the line defect can be formed in an epitaxially 
grown bilayer graphene lattice.

We employ the tight-binding model to study the edge (bound-
ary) state properties of these two structures. The π electronic 
tight-binding Hamiltonian of them can be written in a unified 
form. It reads

H = HT +HB +Hi (1)

where HT (B) denotes the intra-layer interaction in the top (bot-
tom) layer; and Hi includes the inter-layer interaction and the 

gating potential. Within the nearest-neighbor approximation we 
can further write out

HT (B) = −t
∑

〈i j〉α
c†

iαc jα + itR

∑

〈i j〉αβ

(sαβ × di j)zc†
iαc jβ (2)

here, the first term is the usual intra-layer hopping term. The 
operator ciα (c†

iα ) annihilates (creates) an electron with the spin 
α = ±1 on site i; 〈i j〉 stands for that the summation only runs 
over the nearest-neighbor intra-layer atomic pair. And t is the cor-
responding hopping energy. As a simplest approximation, it is as-
sumed to take a uniform value, i.e., t � 2.8 eV, no matter whether 
the involved atomic pair is in the ordinary hexagonal ring or the 
pentagonal and octagonal rings around the line defects. The sec-
ond term at the righthand side of Eq. (2) is the Rashba SOC with 
the coupling strength tR . As mentioned above, only in the shaded 
strip region tR takes a nonzero value. s are the electronic spin Pauli
matrices, and di j is the lattice vector pointing from site j to site i.

The last term in Hamiltonian (1) is given by

Hi = U
∑

i∈T ,α

c†
iαciα − U

∑

i∈B,α

c†
iαciα

− t⊥
∑

i∈T , j∈B,α

(c†
iαc jα + c†

jαciα) (3)

where ±U stands for the onsite energies of the top and bottom 
layers controlled by a gate voltage. t⊥ (� 0.4 eV) is the hopping 
energy between the nearest-neighbor inter-layer atomic pair. At 
the ordinary hexagonal lattice points, such an atomic pair refers 
to the two carbon atoms exactly aligned with each other in the 
normal direction of the lattice plane. Around the line defects, the 
nearest-neighbor inter-layer atomic pair is labeled by a thin line in 
Fig. 1(b).

3. Results and discussions

With the tight-binding Hamiltonian we can calculate the band 
structure of both the ZENR-BG and LD-BG structures introduced 
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