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A multiple scales technique is employed to solve the fluid-Maxwell equations describing a weakly
nonlinear circularly polarized electromagnetic pulse in magnetized plasma. A nonlinear Schrödinger-type
(NLS) equation is shown to govern the amplitude of the vector potential. The conditions for modulational
instability and for the existence of various types of localized envelope modes are investigated in terms
of relevant parameters. Right-hand circularly polarized (RCP) waves are shown to be modulationally
unstable regardless of the value of the ambient magnetic field and propagate as bright-type solitons. The
same is true for left-hand circularly polarized (LCP) waves in a weakly to moderately magnetized plasma.
In other parameter regions, LCP waves are stable in strongly magnetized plasmas and may propagate as
dark-type solitons (electric field holes). The evolution of envelope solitons is analyzed numerically, and it
is shown that solitons propagate in magnetized plasma without any essential change in amplitude and
shape.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The propagation of intense electromagnetic (EM) pulses through
a plasma is associated with a wide variety of interesting relativis-
tic and nonlinear phenomena, such as parametric instabilities [1,2],
harmonic generation [3,4], self-focusing [5], generation of intense
electric and magnetic fields [6,7], wakefield generation [8], and
relativistic EM soliton propagation [9,10]. EM pulse theory is of
relevance in a number of applications, including particle accelera-
tion and fast ignition inertial confinement fusion schemes.

Among the nonlinear effects involved in laser plasma interac-
tion, the existence and dynamics of relativistic EM solitons attract
great attention both from a fundamental point of view and also
due to their possible applications in particle acceleration and fast
ignition concept of laser fusion [11,12]. Relativistic EM solitons
have been observed in 2D and 3D particle-in-cell (PIC) simula-
tions [13–16] and were recently detected in experiments using a
proton imaging technique [6,17]. As shown in [13,15], nearly 25–40
percent of the laser pulse energy goes into the generation of well
localized concentrations of electromagnetic energy in the form of
soliton or soliton-like structures, which can play an important role
in the laser plasma interaction process.
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Many different physical effects play a role in the generation of
relativistic EM solitons, including dispersion effects due to the fi-
nite particle inertia, nonlinearities due to relativistic mass increase
as well as ponderomotive effects that redistribute the plasma den-
sity. Several analytical and numerical investigations have been car-
ried out, concerning relativistic EM solitons. Theoretical analysis
has been performed mainly in the framework of the 1D relativis-
tic fluid approximation, in which solitons are solutions of coupled
nonlinear equations for vector and scalar potentials with appro-
priate boundary conditions. Envelope solitons of circularly polar-
ized EM waves in a cold plasma have been tackled by Kozlov
et al. [9], who adopted a quasineutral approximation to prove the
existence of small-amplitude localized solutions in the form of
drifting solitons. A subsequent numerical investigation focused on
solitons with relativistic amplitude, for which charge separation in
the plasma is substantial [9]. The exact one-dimensional nonlinear
solutions of the relativistic cold plasma equations which represent
drifting envelope solitons of circularly polarized light waves were
treated by Kaw et al. [18]. This soliton pulse can be interpreted as
a light wave which is trapped in a plasma wave generated by it-
self. A relativistic EM soliton solution with zero group velocity was
obtained within a one-dimensional cold plasma model without
using the envelope approximation in [19]. In a weakly relativis-
tic approximation, one-dimensional solitary waves in cold plasmas
were investigated by means of a perturbation technique by Kuehl
and Zhang [20], who found that solitary waves have amplitudes
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which are allowed to take discrete values only. The existence and
dynamics of bright and dark solitons and the influence of ion mo-
tion on relativistic solitons was investigated by Farina et al. [10,
21,22]. The propagation of weakly relativistic circularly polarized
EM pulses in a warm plasma in the form of bright and dark soli-
tons was discussed by Poornakala et al. [23], who found different
parameter regions of existence for different types of solitons. The
1D relativistic EM solitons in an electron–ion plasma of arbitrary
temperature have been investigated in [24–26]. The problem of ex-
istence of single peak as well as multiple peak solitary structures
and their stability, mutual interaction and propagation in the in-
homogeneous cold plasma was tackled by Saxena et al. [27]. The
stability of 1D relativistic solitons was treated in [28,29]. We must
note that all of the above investigations refer to unmagnetized
plasmas.

The generation of intense magnetic field during laser plasma
interactions has been the subject of keen attention since it affects
the dynamics of the laser pulse as well as the plasma background.
The fast ignition scheme for inertial confinement fusion has gener-
ated great interest in the study of magnetic fields in laser plasma
interaction, and of their effects on the pulse propagation [30].
An extremely intense magnetic field (up to hundreds of MG) has
been observed by experimental measurements in the interaction
of short laser pulses with a plasmas [31–34]. One particular phe-
nomenon, the inverse Faraday effect (IFE) has been cited as an
efficient source of intense magnetic fields in laser plasma inter-
action, where the propagation of circularly polarized EM waves
in plasmas induces an axial magnetic field along the direction of
propagation. An axial magnetic field amounting to some MG from
IFE has been measured in numerical experiment [35]. Throughout
the text, the strength of the magnetic field is represented by the
ratio Ω = ωc/ωpe , where ωc is the electron cyclotron frequency
and ωpe is the plasma frequency. As a few examples, this ratio can
takes the values Ω = 0.1 [35], Ω = 1.5 [31], Ω = 0.5 and Ω = 2
[34] in laser matter interaction experiments.

Since the major part of existing investigations dedicated to rel-
ativistic solitons have been performed in unmagnetized plasma
systems, it is tempting to incorporate a magnetic field into a model
for the interaction of circularly polarized laser pulse with plas-
mas, and study how the magnetic field affect the soliton structure.
Shukla and Stenflo [36], have reported stationary soliton struc-
tures for the electromagnetic fields in the framework of a slowly
varying approximation. The existence of large amplitude localized
electromagnetic pulses in magnetized plasma was considered by
Nagesha et al. [37], who have adopted a slowly varying approxi-
mation and neglected perturbations in the longitudinal component
of the electron momentum, to find stationary solutions for circu-
larly polarized EM waves in cold magnetized plasmas. Near-sonic
envelope EM waves were inspected by Rao [38]. It is found that for
a given magnetic field strength, left-hand circularly polarized (LCP)
waves have larger amplitude than right-hand circularly polarized
(RCP) waves, and a similar result was obtained for the associated
low frequency density perturbation. The existence of standing one-
dimensional relativistic solitons in a cold magnetized plasma and
the effects of a magnetic field on soliton stability was treated by
Farina et al. [39]. It is found that the frequency interval of stability
strongly depends both on the magnitude and on the orientation of
the magnetic field. Moreover the maximum field amplitude char-
acterizing the corresponding soliton profiles depends on the exter-
nally exposed magnetic field.

In this work, we start by demonstrating the existence of local-
ized EM modes (bright and dark-type envelope solitons) in mag-
netized plasmas. We employ a multi-scale perturbation method to
treat the problem, in which most of the simplifying assumptions
and approximations included in earlier papers have been aban-
doned. Furthermore, we have included the parallel component in

the expression for the electron momentum, which has been omit-
ted in earlier works. We proceed in our investigation of the evo-
lution of solitons in magnetized plasma by addressing the stability
of these solutions.

The outline of this Letter is as follows. The governing equations
are introduced in Section 2. In Section 3, a perturbation technique
is employed, leading to a nonlinear Schrödinger equation for the
amplitude of the vector potential. The fundamental information
for a modulational instability analysis is provided in Section 4. In
Section 5, the occurrence of envelope solitons is addressed. The
parametric investigation for either LCP or RCP waves is presented
in Section 6, and the results of numerical simulation have been
presented in Section 7. Finally, we summarize our results in Sec-
tion 8.

2. Governing equations

We consider the propagation of a circularly polarized (CP) elec-
tromagnetic wave in a cold plasma embedded in a uniform mag-
netic field B0. The one-dimensional (1D) approximation in wave
propagation is adopted throughout this text, implying that the ra-
diation spot size is large compared to the plasma wavelength, and
thus all field and plasma quantities depend only to one coordi-
nate variable. Here we consider EM field propagation along the x
axis, so ∂/∂ y = ∂/∂z = 0. In terms of the scalar and vector po-
tentials, here denoted by φ and A respectively, the governing fluid
and Maxwell equations in the limit in which ions are assumed to
be stationary can be written in the form [39]

∂2A

∂x2
− ∂2A
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γ
P, (1)

∂2φ
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∂
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)
× (P − A) − V × B0, (4)

γ =
√

1 + P 2, (5)

where V = P/γ is the fluid velocity (P is the electron momen-
tum), γ is the relativistic factor, A and φ are the vector and
scalar potentials, respectively. We have normalized the scalar and
vector potentials by mc2/e, E by mcωpe/e, B by mωpe/e (where
ω2

p0 = n0e2/ε0me; n0 is the ambient plasma density), the momen-
tum by mc, the density by the ambient plasma density n0, the
electron velocity by the light velocity c; furthermore, the length
is normalized by the skin length c/ωp0, and time is scaled by the
plasma period (inverse plasma frequency) (ω−1

p0 ).
We consider electromagnetic pulse wave propagation in the di-

rection parallel to the ambient magnetic field, i.e. along the x
axis, by assuming B0 = Ω x̂, where Ω is the cyclotron frequency
normalized by the ambient plasma frequency ωpe . The state of
polarization of an EM wave propagating along the magnetic field
in homogeneous plasma is left unchanged during wave propaga-
tion [40]. For a circularly polarized EM pulse, the vector potential
and electron momentum can be expressed as

A = A(x, t)( ŷ + iα ẑ), (6)

P = p(x, t)( ŷ + iα ẑ) + γ u(x, t)x̂, (7)

where p(x, t) is the transverse component of the electron momen-
tum, u(x, t) is the longitudinal component of the electron velocity
and α = 1 (α = −1) for left- (right-) hand circular polarization of
the EM pulse. Inserting Eqs. (6) and (7) into Eqs. (1)–(5) we obtain
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