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Identifying and quantifying memory are often critical steps in developing a mechanistic understanding 
of stochastic processes. These are particularly challenging and necessary when exploring processes that 
exhibit long-range correlations. The most common signatures employed rely on second-order temporal 
statistics and lead, for example, to identifying long memory in processes with power-law autocorrelation 
function and Hurst exponent greater than 1/2. However, most stochastic processes hide their memory 
in higher-order temporal correlations. Information measures—specifically, divergences in the mutual in-
formation between a process’ past and future (excess entropy) and minimal predictive memory stored in 
a process’ causal states (statistical complexity)—provide a different way to identify long memory in pro-
cesses with higher-order temporal correlations. However, there are no ergodic stationary processes with 
infinite excess entropy for which information measures have been compared to autocorrelation functions 
and Hurst exponents. Here, we show that fractal renewal processes—those with interevent distribution 
tails ∝ t−α—exhibit long memory via a phase transition at α = 1. Excess entropy diverges only there and 
statistical complexity diverges there and for all α < 1. When these processes do have power-law autocor-
relation function and Hurst exponent greater than 1/2, they do not have divergent excess entropy. This 
analysis breaks the intuitive association between these different quantifications of memory. We hope that 
the methods used here, based on causal states, provide some guide as to how to construct and analyze 
other long memory processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many time series of interest have “short memory”, meaning 
(loosely speaking) that knowledge of the past confers exponentially 
diminishing returns for predicting the future. However, many other 
time series of interest—those with “long memory”—exhibit intrin-
sic timescales that grow without bound as the amount of available 
data increases [1–6]. Examples include the hydrological data first 
studied by Hurst [7] and modeled by Mandelbrot [8] and many 
others, e.g., see Refs. [9,10].

These are qualitatively different processes that demand quali-
tatively different generative models. In other words, signatures of 
long memory imply a kind of structural organization of the un-
derlying process that differs from one with short memory. This is 
the inverse problem of long memory: Which statistical signatures 
identify, uniquely or not, which intrinsic organizations? Sharp an-
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swers are critical to successful empirical analysis and often provide 
necessary first steps in predictive theory building. The complemen-
tary forward problem, an open question, is to identify the kinds of 
memoryful process structure that lead to one or another statisti-
cal signature. Answering this question requires defining statistical 
signatures that quantify memory in stochastic processes.

Many existing quantifications of long memory are based on 
second-order statistics; e.g., on using the autocorrelation func-
tion, power spectrum, or Hurst exponent. These approaches have 
had notable successes in analyzing hydrological data [7,9], mu-
sic [4], spin systems [2], astrophysical flicker noise [6], language 
[11,12], natural scenery [13,14], communication system error clus-
tering [15], financial time series, and many other seemingly com-
plex phenomena [5,16].

However, there are at least two reasons to look to other statis-
tics besides the Hurst exponent. First, second-order statistics alone 
can be misleading, as most stochastic processes seem to hide infor-
mation about their temporal dependencies in higher-order statis-
tics [17,18]. Second, as suggested in Ref. [19], our determination 
of whether or not a process has long memory ideally should be 
invariant under invertible transformations of one’s measurement 
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values. The challenge is not only to find a new statistic that ad-
dresses these two concerns, but to find a statistic that is also easy 
to operationalize.

References [20–22] suggested a process might be said to have 
long memory when the mutual information between its past and 
future (excess entropy) diverges, and Ref. [20] suggested that long 
memory is associated with divergent statistical complexity with 
the effective memory architecture given by a process’ ε-machine. 
By construction, these statistics are invariant under invertible 
transformations of the data; and with sufficiently clever entropy 
estimation techniques, these statistics are also calculable directly 
from time series data.

Unfortunately, there is a paucity of concrete examples upon 
which to build intuition as to how these higher-order statistics and 
the more commonly used second-order statistics relate. In part, 
this lack of concrete examples might owe somewhat to the fact 
that it is nontrivial to construct ergodic stationary processes with 
divergent excess entropy, though see Refs. [23,24]. (Note that the 
processes considered in Ref. [21] were nonergodic [25].)

To that end, we study a tractable class of processes that can 
have both divergent excess entropy and Hurst exponent greater 
than 1/2: the fractal renewal processes [26–29] in which interevent 
intervals are drawn independently and identically (IID) from a 
probability distribution with tails ∝ t−α . These processes are very 
widely used in the physical, biological, and social sciences to model 
diverse long-memory phenomena, ranging from current fluctua-
tions in electronic devices and neuronal spike trains to earthquakes 
and astrophysical time series [30–39].

Previous studies analyzed the second-order statistics of such 
processes in some detail [9,40]. Here, we use techniques inspired 
by those in Refs. [23,24] to calculate the excess entropy and statis-
tical complexity of fractal renewal processes for the first time. We 
find that fractal renewal processes have divergent excess entropy 
only and exactly when α = 1 and divergent statistical complex-
ity as α → 1 from above and for all 0 < α < 1. However, frac-
tal renewal processes have power-law power spectra for all 0 <
α < 2 [40] and Hurst exponents greater than 1/2 [9]—the latter 
being two of the conventional second-order statistical signatures 
of “long memory”. Thus, even for these relatively straightforward 
processes, the excess entropy and statistical complexity encapsu-
late a different notion of long memory than one gleans using only 
second-order statistics. These results also add fractal renewal pro-
cesses to a very short list of known stationary ergodic processes 
with divergent excess entropy [23,24] and so, we hope, pave the 
way for more general comparisons between different definitions of 
long memory.

Section 2 briefly reviews definitions of memory in stochastic 
processes. Section 3 calculates informational measures of memory 
for fractal renewal processes. Section 4 then compares our findings 
to the second-order statistics calculated by Refs. [9,40] and draws 
out the lessons for the above application examples. We close by 
reflecting on structural organization associated with long memory.

2. Background

There are many definitions for a stochastic process to have 
long memory; Ref. [19] provides a particularly helpful survey. Con-
sider a sequence of � observations x0, x1, . . . , x�−1, realizations of 
discrete-valued random variables X0, X1, . . . , X�−1. For instance, if 
the autocorrelation function C(τ ) is asymptotically a power law 
multiplied by a slowly varying function g(τ ), then a process can 
be said to have “long memory”:

C(τ ) = σ−2
�∑

j=0

(x j − μ)(x j+τ − μ)

∝ g(τ )τ−γ ,

with 0 < γ < 1, mean μ, and variance σ 2. Yet other definitions are 
based on the decay of the spectral density:

P( f ) = �−1
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.

The process has long memory when P( f ) ∝ f −β L1( f ) as f ap-
proaches 0 with 0 < β < 1, where L1( f ) is a slowly varying func-
tion near f = 0. Other definitions still are based on how variances 
deviate from time-local linear extrapolation. Starting with the vari-
ance of partial sums S j = X1 +· · ·+ X j , one uses the rescaled-range
statistics:

RS(�) = max0≤ j≤�(S j − j
�

S�) − min0≤ j≤�(S j − j
�

S�)

σ

∝ �−H ,

where H ∈ (0, 1) is the Hurst index. Processes with H > 1/2 are 
interpreted as having long memory. Unfortunately, even these 
second-order statistics are not always equivalent signatures of long 
memory. See Ex. 5.2 of Ref. [19] for an example of a process in 
which the spectral density but not correlations are regularly vary-
ing.

In a search for general principles from ergodic theory, Sec. 4 
of Ref. [19] proposed that we require a definition of long mem-
ory independent of invertible transformations of the data. That is, 
if an invertible transformation is applied pointwise to each ob-
servation Xi , we would hope that the resulting process has long 
memory if and only if the original process had long memory [41]. 
This desideratum is not always satisfied by definitions based on 
the above second-order statistics, though see Thm. 4.1 of Ref. [19].

Since strongly mixing processes have short memory and non-
ergodic processes could be said to have infinite memory [25], 
Ref. [19] proposed that one or another type of nonmixing prop-
erty is a good candidate for long memory in ergodic stationary 
processes. This criterion satisfies the invariance desideratum above 
but can be rather difficult to evaluate.

Fortunately, the information-theoretic notions of memory we 
consider also satisfy the transformation-invariant desideratum and 
have been successfully deployed as quantifications for the “com-
plexity” of stochastic processes [21,42]. We study two: the excess 
entropy E = I[←−X ; −→X ], or the mutual information between a pro-
cess’ past 

←−
X = . . . X−3 X−2 X−1 and future 

−→
X = X0 X1 X2 . . . [22]; 

and the statistical complexity Cμ , or the amount of information 
from the past 

←−
X required to predict the future 

−→
X as well as pos-

sible [42]. When the excess entropy diverges, we are interested 
in the asymptotic rate of divergence of finite-length excess en-
tropy estimates E(�) = I[←−X ; −→X �] [21,22]. This asymptotic rate of 
divergence is also invariant to temporally local convolutions and 
invertible transformations of the data [21].

To more precisely define and calculate the statistical complex-
ity and the excess entropy, we need to recall the causal states of 
computational mechanics. Consider clustering pasts according to 
an equivalence relation ∼ in which two pasts are equivalent when 
they have the same conditional probability distribution over fu-
tures: ←−x ∼ ←−x ′ if and only if Pr(

−→
X |←−X = ←−x ) = Pr(

−→
X |←−X = ←−x ′). 

The resulting clusters are forward-time causal states S+ , which in-
herit a probability distribution from the probability distribution 
over pasts. The forward-time statistical complexity is the entropy of 
these causal states: C+

μ = H[S+]. For more detail, see Refs. [43,44].
We can similarly define the reverse-time causal states S− by 

clustering futures with equivalent conditional probability distri-
butions over pasts: −→x ∼ −→x ′ if and only if Pr(

←−
X |−→X = −→x ) =

Pr(
←−
X |−→X = −→x ′). The reverse-time statistical complexity is the en-

tropy of those reverse-time causal states: C−
μ = H[S−]. Renewal 

processes are time-reversal invariant [45], or causally reversible, so 
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