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We consider the interaction between a single cavity mode and N � 1 identical qubits, assuming that 
any system parameter can be rapidly modulated in situ by external bias. It is shown that, for the qubits 
initially in the ground states, three photons can be coherently annihilated in the dispersive regime for 
harmonic modulation with frequency 3ω0 − �0, where ω0 (�0) is the bare cavity (qubit) frequency. 
This phenomenon can be called “Anti-dynamical Casimir effect”, since a pair of excitations is destroyed 
without dissipation due to the external modulation. For the initial vacuum cavity state, three qubit 
excitations can also be annihilated for the modulation frequency 3�0 − ω0.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

“Dynamical Casimir effect” (DCE) is a broad term used nowa-
days to denote a group of phenomena characterized by creation 
of quanta from some initial state (usually vacuum) of some field 
due to time-dependent variations of the geometry or the mate-
rial properties of a macroscopic or mesoscopic system (see [1–5]
for recent reviews). The stricter term “Cavity DCE” [6] was coined 
to represent the process of photon generation from the electro-
magnetic (EM) vacuum and other initial states inside some cavity 
(resonator) due to fast motion of a wall or the time-modulation 
of material properties of the boundary or the intra-cavity medium 
(e.g., dielectric permittivity or conductivity) [7,8]. Traditionally DCE 
has been studied from the macroscopic viewpoint [1,4,7,9–15], 
according to which the changing medium or moving walls are 
effectively described as time-dependent dielectric permittivity or 
boundary conditions for the field, so there is no need to take into 
account the internal degrees of freedom of the subsystems that 
constitute the boundary/medium.

Recently the analogs of DCE have been observed experimentally 
in the single-mirror [16] and cavity [17] configurations. These ex-
periments were implemented in the solid-state architecture known 
as “circuit Quantum Electrodynamics” (circuit QED) [4,18,19]. The 
modulation of the boundary conditions for the EM field inside 
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superconducting coplanar waveguide was achieved by threading 
time-dependent magnetic flux through a single or an array of 
SQUIDs (superconductive quantum interference devices) composed 
of Josephson junctions.

Josephson junctions are also the main constituent of the super-
conducting artificial atoms (AA) [20–22] that can strongly couple 
to the resonator field via the dipole interaction [23,24]. As the 
properties of the artificial atoms can be controlled in situ via elec-
tric/magnetic fields, it is natural to ask whether one could imple-
ment the DCE with a single AA or an array of such atoms, when 
the atomic internal degrees of freedom play essential role and can-
not be replaced by effective time-dependent boundary conditions. 
This question has been addressed in series of theoretical papers 
over the last decade [25–32], which indicate that DCE could in-
deed be implemented with a single two-level atom (also called 
qubit), while the use of atomic ensemble with N noninteracting 
qubits provides N-fold increase in the photon generation rate [33]. 
However, the atomic internal degrees of freedom modify the dy-
namics of DCE – the field becomes entangled with the qubits and 
the photon generation saturates due to intrinsic Kerr nonlinear-
ity originating from the dispersive light-matter interaction. On the 
other hand, the atom-field entanglement could be tailored for new 
applications, e.g., indirect monitoring of the cavity field state [5,
6,34–38], generation of multipartite quantum correlations [39,40]
and simulation of relativistic motion [41].

The realization of DCE by means of microscopic objects offers 
another novelty: since the atom-field interaction alters the spec-
trum of the composite system, new transitions between the bare 

http://dx.doi.org/10.1016/j.physleta.2016.02.031
0375-9601/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physleta.2016.02.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:adodonov@fis.unb.br
http://dx.doi.org/10.1016/j.physleta.2016.02.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2016.02.031&domain=pdf


L.C. Monteiro, A.V. Dodonov / Physics Letters A 380 (2016) 1542–1546 1543

eigenstates (dressed states) can be driven via weak resonant mod-
ulation of the cavity or atomic parameters [25,26,34,36,37,42,43]. 
One such transition has been recently discovered in [33] and called 
attention for coherently destroying photons instead of creating 
[44]. Thus the system response to harmonic perturbation consists 
in transferring the energy from the system to the external agent 
– an effect opposite to the standard DCE, or “Anti-DCE”. Similar 
mechanism of energy transfer from the signal and idler beams to 
the pump beam is known under the name “coherent attenuation” 
in Nonlinear Optics [45]. Anti-DCE was investigated theoretically 
for the single-qubit setup and two different dissipation models in 
[32]. It was shown that Anti-DCE has a rather small transition rate 
for the currently available parameters and requires the qubit be 
prepared in the ground state and be detuned from the cavity fre-
quency. Moreover, only two system excitations can be annihilated 
for a single-tone modulation: destruction of three photons is ac-
companied by the qubit excitation (more than two excitations can 
be annihilated if one employs multi-tone modulations).

In this letter we extend the analysis of Anti-DCE to the ensem-
ble of N identical qubits, such as array of superconducting artificial 
atoms [46] or a cloud of cold polar molecules trapped above the 
waveguide resonator [47,48]. We consider the harmonic modula-
tion of any system parameter and derive the effective Hamiltonian 
that governs the dynamics. It is shown analytically and numeri-
cally that the Anti-DCE behavior for N � 1 is analogous to the 
one found for N = 1 [32], with destruction of three photons com-
plemented by creation of one collective atomic excitation, though 
the associated transition rate undergoes a collective enhancement. 
Moreover, for a different modulation frequency one could also co-
herently annihilate three collective atomic excitations if the cav-
ity was initially in the vacuum state (“matter Anti-DCE”). These 
phenomena take place for stationary qubits too, provided the cav-
ity frequency undergoes external modulation due to time-varying 
macroscopic boundary conditions.

2. Mathematical formalism

We consider a set of N identical noninteracting qubits with 
transition frequencies � confined in a cavity or trapped above a 
superconducting waveguide resonator. When the qubits are nearly 
resonant with the cavity mode of frequency ω we can use the 
single-mode approximation and write for the total Hamiltonian 
(we set h̄ = 1)

Ĥ = ωn̂ +
N∑

l=1

[
�

2
σ̂

(l)
z + g(â + â†)(σ̂

(l)
+ + σ̂

(l)
− )

]
+ iχ(â†2 − â2).

(1)

Here â (â†) is the cavity field annihilation (creation) operator and 
n̂ = â†â is the photon number operator. The qubit operators are 
σ̂

(l)
− = |g(l)〉〈e(l)|, σ̂ (l)

+ = |e(l)〉〈g(l)| and σ̂ (l)
z = |e(l)〉〈e(l)| − |g(l)〉〈g(l)|, 

where |g(l)〉 and |e(l)〉 denote the ground and excited states of the 
l-th qubit, respectively.

Parameter g stands for the interaction strength between the 
cavity field and a single qubit, so the term g(â + â†)(σ̂

(l)
+ + σ̂

(l)
− )

describes the standard dipole interaction [49]. In this work we do 
not neglect the counter-rotating terms (âσ̂ (l)

− + â†σ̂
(l)
+ ), since they 

are responsible for the Anti-DCE. The “squeezing coefficient” χ is 
included for the sake of generality and is not essential for the 
main findings of this work. Its time-independent part may arise 
due to the terms proportional to the square of the vector poten-
tial, which appear naturally when one uses the minimal-coupling 
Hamiltonian and the dipole approximation of the first-order or 
higher [33,49–51]. The time-dependent part of χ is related to 
some form of parametric amplification process [4]; in the context 

of nonstationary phenomena one can show that for external time-
modulation of the cavity frequency it reads (in the simplest case) 
χ = (4ω)−1dω/dt [52,53].

In this paper we assume that all the parameters of the Hamil-
tonian can be modulated by external bias (simultaneously or one 
at a time) as

X = X0 + εX sin(ηt + φX ) , X = {ω,�, g,χ} . (2)

Here X0 is the bare value and εX ≥ 0 is the modulation depth 
of X . The modulation frequency is η, assumed to be of the order 
∼ 2ω0, and φX is the phase associated to the modulation of the 
parameter X .

The case N = 1 was studied thoroughly in [32], so here we con-
sider the opposite scenario of ensemble of qubits, N � 1 [31,33]. 
First we define the collective matter operators via the Holstein–
Primakoff transformation [54]

N∑
l=1

σ̂
(l)
+ = b̂†(N − b̂†b̂)1/2 ,

N∑
l=1

σ̂
(l)
− = (N − b̂†b̂)1/2b̂

N∑
l=1

σ̂
(l)
z = 2b̂†b̂ − N , (3)

where the ladder operators b̂ and b̂† satisfy the bosonic commuta-
tion relation [b̂, ̂b†] = 1. To the first order in b̂†b̂/N the Hamiltonian 
(1) becomes

Ĥ = ω0n̂ + �b̂†b̂ + g̃(â + â†)(b̂ + b̂†) + iχ(â†2 − â2)

− g̃

2N
(â + â†)(b̂†2b̂ + b̂†b̂2) , (4)

where we defined the collective coupling strength1 g̃ ≡ √
N g , so 

that g̃0 = √
N g0 and ε̃g = √

Nεg (we consider g0 ≥ 0 without loss 
of generality). The Hamiltonian (4) holds provided the inequality 
|b†b|max 
 N is satisfied, where |b†b|max is the maximum number 
of qubits’ excitations.

Following the method developed in [31] we write the solution 
in the Heisenberg picture as

â(t) = e−it	+/2

β

{
[β+ Âh(t) + g̃0 B̂h(t)]e−itβ/2

+ [β− Âh(t) − g̃0 B̂h(t)]eitβ/2
}

(5)

b̂(t) = e−it	+/2

β

{
[β− B̂h(t) + g̃0 Âh(t)]e−itβ/2

+ [β+ B̂h(t) − g̃0 Âh(t)]eitβ/2
}

, (6)

where 	+ ≡ ω0 + �0, β ≡
√

	2− + 4g̃2
0 and β± ≡ (β ± 	−)/2. 

	− ≡ ω0 −�0 is the detuning between the bare values of the cav-
ity and qubit frequencies.

Next we introduce the new operators Â and B̂ via the implicit 
relations

Âh = eitδ̃+( Âeitδχ + iFAB B̂)eiFA

B̂h = eitδ̃+(B̂ + iF∗
AB Âeitδχ )eiFB , (7)

where we defined the resonance shifts δ̃+ = g̃2
0/	+ and δχ =

4χ2
0 /	+ . The small time-dependent c-number functions are

1 In this paper the tilde over a c-number denotes the collective N-qubits parame-
ter, whereas the respective quantity without the tilde is the single-qubit parameter.



Download English Version:

https://daneshyari.com/en/article/1860739

Download Persian Version:

https://daneshyari.com/article/1860739

Daneshyari.com

https://daneshyari.com/en/article/1860739
https://daneshyari.com/article/1860739
https://daneshyari.com

