
Physics Letters A 380 (2016) 1395–1400

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Quantum speed limit for mixed states using an experimentally 

realizable metric

Debasis Mondal ∗, Arun Kumar Pati ∗

Quantum Information and Computation Group, Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 December 2015
Received in revised form 12 February 2016
Accepted 15 February 2016
Available online 18 February 2016
Communicated by P.R. Holland

Keywords:
Visibility
Quantum speed limit
CPTP maps
Quantum metrology
Margolus–Levitin bound
Mandelstam–Tamm bound

Here, we introduce a new metric for non-degenerate density operator evolving along unitary orbit and 
show that this is experimentally realizable operation dependent metric on the quantum state space. Using 
this metric, we obtain the geometric uncertainty relation that leads to a new quantum speed limit (QSL). 
We also obtain a Margolus–Levitin bound and an improved Chau bound for mixed states. We propose 
how to measure this new distance and speed limit in quantum interferometry. Finally, we also generalize 
the QSL for completely positive trace preserving evolutions.
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1. Introduction

In recent years, various attempts are being made in the labora-
tory to implement quantum gates, which are basic building blocks 
of a quantum computer. Performance of a quantum computer is 
determined by how fast one can apply these logic gates so as to 
drive the initial state to a final state. Then, the natural question 
that arises is: can a quantum state evolve arbitrarily fast? It turns 
out that quantum mechanics limits the evolution speed of any 
quantum system. In quantum information, study of these limits has 
found several applications over the years. Some of these include, 
but are not limited, to quantum metrology, quantum chemical dy-
namics, quantum control and quantum computation.

Extensive amount of work has already been done on the sub-
ject to “minimum time required to reach a target state” since the 
appearance of first major result by Mandelstam and Tamm [1]. 
However, the notion of quantum speed or speed of transportation 
of quantum state was first introduced by Anandan–Aharonov us-
ing the Fubini–Study metric [2] and subsequently, the same notion 
was defined in Ref. [3] using the Riemannian metric [4]. It was 
found that the speed of a quantum state on the projective Hilbert 
space is proportional to the fluctuation in the Hamiltonian of the 
system. Using the concept of Fubini–Study metric on the projective 
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Hilbert space, a geometric meaning is given to the probabilities of 
a two-state system [5]. Furthermore, it was shown that the quan-
tum speed is directly related to the super current in the Josephson 
junction [6]. In the last two decades, there have been various at-
tempts made in understanding the geometric aspects of quantum 
evolution for pure as well for mixed states [7–56]. The quantum 
speed limit (QSL) for the driven [53] and the non-Markovian [52]
quantum systems is introduced using the notion of Bures met-
ric [61]. Very recently, QSL for physical processes was defined by 
Taddei et al. in Ref. [48] using the Bures metric and in the case 
of open quantum system the same is introduced by Campo et al. 
in Ref. [49] using the notion of relative purity [47]. In an inter-
esting twist, it has been shown that QSL for multipartite system 
is bounded by the generalized geometric measure of entangle-
ment [50].

It is worthwhile to mention that very recently, an experiment 
was reported [57], which is the only experiment performed, where 
only a consequence of the QSL had been tested and any experi-
mental test of the speed limit itself is still lacking. In this paper, we 
introduce a new operation dependent metric, which can be mea-
sured experimentally in the interference of mixed states. We show 
that using this metric, it is possible to define a new lower limit 
for the evolution time of any system described by mixed state un-
dergoing unitary evolution. We derive the QSL using the geometric 
uncertainty relation based on this new metric. We also obtain a 
Margolus–Levitin (ML) bound and an improved Chau bound for 
mixed states using our approach. We show that this bound for the 
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evolution time of a quantum system is tighter than any other ex-
isting bounds for unitary evolutions. Most importantly, we propose 
an experiment to measure this new distance in the interference of 
mixed states. We argue that the visibility in quantum interference 
is a direct measure of distance for mixed quantum states. Finally, 
we generalize the speed limit for the case of completely positive 
trace preserving evolutions and get a new lower bound for the 
evolution time using this metric.

The organization of the paper is as follows. In section 2, we de-
fine the metric for the density operator along unitary path. Then, 
we use this metric to obtain new and tighter time bounds for uni-
tary evolutions in section 3, followed by examples in section 4. 
In section 5, we show that bounds are experimentally measurable. 
Section 6 is for generalization of the metric and the time bounds 
for completely positive trace preserving (CPTP) maps followed by 
an example. Then, we conclude in section 7.

2. Metric along unitary orbit

Let H denotes a finite-dimensional Hilbert space and L(H) is 
the set of linear operators on H. A density operator ρ is a Her-
mitian, positive and trace class operator that satisfies ρ ≥ 0 and 
Tr(ρ) = 1. Let ρ be a non-degenerate density operator with spec-
tral decomposition ρ = ∑

k λk|k〉〈k|, where λk ’s are the eigenvalues 
and {|k〉}’s are the eigenstates. We consider a system at time t1
in a state ρ1. It evolves under a unitary evolution and at time t2, 
the state becomes ρ2 = U (t2, t1)ρ1U †(t2, t1). Any two density op-
erators that are connected by a unitary transformation will give 
a unitary orbit. If U (N) denotes the set of N × N unitary matri-
ces on HN , then for a given density operator ρ , the unitary orbit 
is defined by ρ ′ = {UρU † : U ∈ U (N)}. The most important notion 
that has resulted from the study of interference of mixed quan-
tum states is the concept of the relative phase between ρ1 and ρ2
and the notion of visibility in the interference pattern. The relative 
phase is defined by [58]

�(t2, t1) = ArgTr[ρ1U (t2, t1)] (1)

and the visibility is defined by

V = |Tr[ρ1U (t2, t1)]|. (2)

Note that if ρ1 = |ψ1〉〈ψ1| is a pure state and |ψ1〉 = |ψ(t1)〉 →
|ψ2〉 = |ψ(t2)〉 = U (t2, t1)|ψ(t1)〉, then |Tr(ρ1U (t2, t1))|2 =
|〈ψ(t1)|ψ(t2)〉|2, which is nothing but the fidelity between two 
pure states. The quantity Tr[ρ1U (t2, t1)] represents the probabil-
ity amplitude between ρ1 and ρ2, which are unitarily connected. 
Therefore, for the unitary orbit |Tr(ρ1U (t2, t1))|2 represents the 
transition probability between ρ1 and ρ2.

All the existing metrics on the quantum state space give rise 
to the distance between two states independent of the operation. 
Here, we define a new distance between two unitarily connected 
states of a quantum system. This distance not only depends on the 
states but also depends on the operation under which the evolu-
tion occurs. Whether a state of a system will evolve to another 
state depends on the Hamiltonian which in turn fixes the uni-
tary orbit. Let the mixed state traces out an open unitary curve 
� : t ∈ [t1, t2] → ρ(t) in the space of density operators with “end 
points” ρ1 and ρ2. If the unitary orbit connects the state ρ1 at 
time t1 to ρ2 at time t2, then the (pseudo-)distance between them 
is defined by

DU (t2,t1)(�ρ1 ,�ρ2)
2 := 4(1 − |Tr[ρ1U (t2, t1)]|2), (3)

which also depends on the orbit, i.e., U (t2, t1). We will show that 
it is indeed a metric, i.e., it satisfies all the axioms to be a metric.

We know that for any operator A and a unitary operator U , 
|Tr(AU )| ≤ Tr|A| with equality for U = V †, where A = |A|V is the 

polar decomposition of A [59]. Considering A = ρ = |ρ|, we get 
|Tr[ρ1U (t2, t1)]| ≤ 1. This proves the non-negativity, or separation 
axiom. It can also be shown that DU (�ρ1 , �ρ2 ) = 0 if and only 
if there is no evolution along the unitary orbit, i.e., ρ1 = ρ2 and 
U = I . If there is no evolution along the unitary orbit, then we 
have U (t2, t1) = I , i.e., trivial or global cyclic evolution, i.e., ρ2 =
U (t2, t1)ρ1U †(t2, t1) = ρ1, which in turn implies DU (�ρ1 , �ρ2 ) = 0. 
To see the converse, i.e., if DU (t2,t1)(�ρ1 , �ρ2) = 0, then we have no 
evolution, consider the purification. We have DU (t2,t1)(�ρ1 , �ρ2) =
4(1 − |〈�AB(t1)|�AB(t2)〉|2) where |�AB(t2)〉 = U A(t2, t1) ⊗
I B |�AB(t1)〉 such that TrB(|�AB(t1)〉〈�AB(t1)|) = ρ1 and
TrB(|�AB(t2)〉〈�AB(t2)|) = ρ2. In the extended Hilbert space, 
DU (t2,t1)(�ρ1 , �ρ2 ) = 0 implies |〈�AB(t1)|�AB(t2)〉|2 = 1 and hence, 
�AB(t1) and �AB(t2) are same up to U (1) phases. Therefore, in the 
extended Hilbert space, DU (t2,t1)(�ρ1 , �ρ2 ) = 0 if and only if there 
is no evolution. But in the original Hilbert space there are non-
trivial cyclic evolutions for which DU (t2,t1)(�ρ1 , �ρ2 ) �= 0 in spite 
of the fact that ρ1 = ρ2. To prove the symmetry axiom, we show 
that the quantity |Tr[ρ1U (t2, t1)]| is symmetric with respect to the 
initial and the final states. In particular, we have

|Tr[ρ1U (t2, t1)]| = |Tr[ρ2U (t1, t2)]| = |Tr[ρ2U (t2, t1)]|. (4)

To see that the new distance satisfies the triangle inequality, con-
sider its purificaton. Let ρA(t1) and ρA(t2) be two unitarily con-
nected mixed states of a quantum system A. If we consider the pu-
rification of ρA(t1), then we have ρA(t1) = TrB [|�AB(t1)〉〈�AB(t1)|], 
where |�AB(t1)〉 = (

√
ρA(t1)V A ⊗ V B)|α〉 ∈ HA ⊗ HB , V A , V B

are local unitary operators and |α〉 = ∑
i

|i A iB〉. The evolution of 

ρA(t1) under U A(t2, t1) is equivalent to the evolution of the pure 
state |�AB(t1)〉 under U A(t2, t1) ⊗ I B in the extended Hilbert 
space. Thus, in the extended Hilbert space, we have |�AB (t1)〉 →
|�AB(t2)〉 = U A(t2, t1) ⊗ I B |�AB(t1)〉. So, the transition amplitude 
between two states is given by 〈�AB(t1)|�AB(t2)〉 =
Tr[ρA(t1)U A(t2, t1)]. This simply says that the expectation value 
of a unitary operator U A(t2, t1) in a mixed state is equivalent to 
the inner product between two pure states in the enlarged Hilbert 
space. Since, in the extended Hilbert space the purified version of 
the metric satisfies the triangle inequality, hence the triangle in-
equality holds also for the mixed states. Thus, DU (t2,t1)(�ρ1 , �ρ2) is 
a distance in the extended Hilbert space and a pseudo-distance in 
the original Hilbert space. If ρ1 and ρ2 are two pure states, which 
are unitarily connected then our new metric is the Fubini-Study 
metric [3,2,60] on the projective Hilbert space CP(H).

Now, imagine that two density operators differ from each other 
in time by an infinitesimal amount, i.e., ρ(t1) = ρ(t) = ∑

k λk|k〉〈k|
and ρ(t2) = ρ(t + dt) = U (dt)ρ(t)U †(dt). Then, the infinitesimal 
distance between them is given by

dD2
U (dt)(�ρ(t1),�ρ(t2)) = 4(1 − |Tr[ρ(t)U (dt)]|2). (5)

If we use the time independent Hamiltonian H for the unitary 
operator, then keeping terms upto second order, the infinitesimal 
distance (we drop the subscript) becomes

dD2 = 4

h̄2
[Tr(ρ(t)H2) − [Tr(ρ(t)H)]2]dt2

= 4

h̄2
[
∑

k

λk〈k|H2|k〉 − (
∑

k

λk〈k|H|k〉)2]dt2

= 4

h̄2
[
∑

k

λk〈k̇|k̇〉 − (i
∑

k

λk〈k|k̇〉)2]dt2, (6)

where in the last line we used the fact that ih̄|k̇〉 = H |k〉. Therefore, 
the total distance traveled during an evolution along the unitary 
orbit is given by
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