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How to exploit public non-renewable resources is a public goods dilemma. Individuals can choose to 
limit the depletion in order to use the resource for a longer time or consume more goods to benefit 
themselves. When the resource is used up, there is no benefit for the future generations any more, thus 
the evolutionary process ends. Here we investigate what mechanisms can extend the use of resources in 
the framework of evolutionary game theory under two updating rules based on imitation and aspiration, 
respectively. Compared with imitation process, aspiration dynamics may prolong the sustainable time of 
a public resource.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is so ubiquitous to misuse public non-renewable resources 
that it becomes a hot topic in the international forum nowadays. 
One of the characteristics of public resources is that the use by one 
reduces the quantity or quality available to others. These resources 
include fossil power, groundwater basins and atmosphere. Obvi-
ously, the overexploitation of resources today has a high cost on 
the welfare of future generations [1–5]. Benefitting future genera-
tions is important to the survival of genes, families, organizations, 
nations and the global ecosystem. Yet it is challenging, as it re-
quires that individuals in this generation limit themselves in using 
those resources and make sacrifices today.

The public resource dilemma is highly focused on in today’s 
global society, because it determines how long we will hold those 
necessary resources for the sustainable development. An excellent 
example of such a dilemma concerns the mitigation of the effects 
of global warming. It has been described as one of the biggest 
public goods dilemmas that all of us have to face and one that 
we cannot afford to lose [4–9]. Indeed, given that the atmosphere 
of our planet is an indivisible good accessible by all, individuals, 
regions, or nations can choose to reduce the emissions of green-
house gases or deforestation (cooperation) or not (defection). The 
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ideal case under cooperation is to use the non-renewable resource 
for a long time. However, individuals or organizations may opt to 
be free riders in such global public goods games, hoping to benefit 
from the efforts of others while choosing not to make any effort 
themselves.

In general, whether or not devoting efforts targeting at the mit-
igation of future losses, i.e., the collective risk dilemma, depends 
on how likely the disaster happens. Such a dilemma is beautifully 
captured in simple and elegant experiments [7–11] and models 
[12–16]. Those experiments and models make use of a repeated 
game to study whether the target can be met given a time pe-
riod [5,17–19]. However, it is seldom addressed how the time until 
which the resource is run out of is influenced. In this paper, we 
establish an evolutionary game model to capture the sustainable 
time of public goods. We study the sustainable time, and focus on 
how the sustainable time is affected by human strategy updating. 
Here we consider two updating rules: imitation and self-learning 
based on one’s own aspiration [20–23]. We are proposing a novel 
theoretical question: how fast does an evolutionary process end? 
Typically, game theoretical models rooted in population genetics 
focus on the fixation time when the population size is finite. But 
the evolution process can still be well defined when the fixation 
event happens. Even though the population configuration does not 
change, everyone still learns each other based on the updating 
rule. Here, however, when the resource is used up, there is no con-
sumption behavior any more, thus the evolutionary process really 
ends. We utilize methods of statistical physics to analytically study 
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the sustainable time of public goods, and find that when we adopt 
a self-regulated method to update our strategy we are likely to use 
the resource for a longer time than the case in which we use an 
imitation process. Further, the sustainable time is the shortest for 
the intermediate aspiration level, and strong selection shortens the 
evolutionary time of the public resource dilemma.

2. Model

2.1. The dilemma of resource consumption

We consider evolutionary game dynamics with two strategies in 
a finite well-mixed population of size N . In this game, we assume 
that initially the population owns public goods of amount P . A fo-
cal player can be of type A or B . Individuals of type A and B con-
sume the public goods and acquire the payoffs at the amount of a
and b, respectively (0 < a ≤ b). Thus strategy A is cooperation and 
strategy B is defection. If there are i A players in the population, 
thus N − i individuals of type B , there remains P − ai − b(N − i)
amount of public goods after one time step.

This game theoretic framework is a simplification compared 
to a real-world cooperation dilemma. This simplification, how-
ever, captures key elements of the sustainable challenge facing our 
world [3]: the game is non-zero sum, with cooperation today cre-
ating greater benefits for the future.

2.2. Updating rules

We adopt two different updating rules: imitation which is 
based on individuals’ information about their opponents, and as-
piration which is based on individuals’ information about them-
selves.

In imitation dynamics, an individual, namely F , is selected uni-
formly at random from the entire population of size N . Then, 
we randomly choose another individual, namely G . Subsequently, 
F adopts G ’s strategy with probability 1/{1 + exp[−ω(πG − πF )]}
[24–29]. Here πx is the payoff of individual x. ω denotes the imi-
tation intensity, measuring the dependence of decision-making on 
the payoff difference. For ω → 0, individual F imitates the strategy 
of G almost randomly, which is referred as “weak selection.” For 
ω → ∞, a more successful player is very likely imitated, which is 
referred as “strong selection.”

The state of the system is denoted as (i, g) where i is the 
number of individuals using strategy A and g is the amount of 
resources left at time t . Thus if at time t , the system is at state 
(i, g), then at the next time three events are possible: state (i, g)

can be changed to (i + 1, g − [ai + (N − i)b]) with probability 
T +(i), to (i − 1, g − [ai + (N − i)b]) with probability T −(i), or to 
(i, g − [ai + (N − i)b]) with probability T 0(i). All other transitions 
cannot occur. The transition probabilities are given by [27]:

T +(i) = N − i

N

i

N

1

1 + exp[−ω(a − b)] ,

T −(i) = i

N

N − i

N

1

1 + exp[−ω(b − a)] , and

T 0(i) = 1 − T +(i) − T −(i). (1)

For aspiration-driven updating, players are likely to switch 
strategies if the aspiration level is not met, where the level of as-
piration is an intrinsic property of the focal individual [30–32]. For 
a randomly chosen individual, it compares its payoff πx with the 
aspiration level α to decide whether switching its strategy or not. 
The probability to switch is 1/{1 + exp[−ω(α −πx)]} [22,23]. Here 
ω > 0 is the selection intensity. The level of aspiration provides a 
global benchmark of tolerance or dissatisfaction in the population. 
The transition probabilities are given by

T +(i) = N − i

N{1 + exp[−ω(α − b)]} ,

T −(i) = i

N{1 + exp[−ω(α − a)]} , and

T 0(i) = 1 − T +(i) − T −(i). (2)

In both dynamics, novel strategies (apart from the two pre-
scribed strategies) cannot emerge without additional mechanisms 
such as spontaneous exploration of strategy space (similar to mu-
tation) [27,33–37]. The major difference is that the aspiration-
driven updating rule does not require any knowledge about the 
payoffs of others. Thus aspiration level based dynamics, a form of 
self-learning, requires less information about an individual’s strate-
gic environment than imitation dynamics.

Without resource consumption, compared to imitation (pair-
wise comparison) dynamics, aspiration dynamics has no absorbing 
boundaries. Even in a homogeneous population, there is a posi-
tive probability that an individual can switch to another strategy 
owing to the dissatisfaction resulting from payoff–aspiration differ-
ence. This facilitates the escape from the states that are absorbing 
in the pairwise comparison (imitation) process and other Moran-
like evolutionary dynamics. However, once the resource is taken 
into account as in our model, the state has been changed. For both 
aspiration and imitation processes, there exist absorbing states at 
which the resource is used up.

2.3. Sustainable time of public resources

Let us denote by τi,g the average time such that the system 
first hits the state where there is no resource starting from state 
(i, g). The following aim is to get the analytical expression for the 
sustainable time τi,g .

Note that τi,g is governed by the following Kolmogorov forward 
equation:

τi,g = 1 + τi+1,g−q(i)T +(i) + τi,g−q(i)T 0(i) + τi−1,g−q(i)T −(i),

(3)

where q(i) = ai + b(N − i). The boundary condition is τ j,0 = 0
where j ∈ {0, 1, · · · , N}.

For a = b, the resources are decreased by aN for each time 
step. This is independent of the updating process. Thus the time 
to hit the state in which resource is run out of will be g/aN , i.e., 
τi,g = g/aN in this case. What is left is to figure out a method to 
calculate τi,g , when a �= b.

Rearranging Eq. (3) and replacing i with i + 1 lead to

τi+1,g − τi+1,g−q(i+1)

= 1 + T +(i + 1) [τi+2,g−q(i+1) − τi+1,g−q(i+1)]
+ T −(i + 1) [τi+1,g−q(i+1) − τi,g−q(i+1)]. (4)

For a = b, based on the above analysis we have τi+2,g−q(i+1) =
τi+1,g−q(i+1) = [g −q(i + 1)]/a. For a ≈ b, we expect the solution is 
continuous thus the difference of those two times should be small, 
i.e., τi+2,g−q(i+1) − τi+1,g−q(i+1) → 0. By the same argument, we 
have that τi+1,g−q(i+1) − τi,g−q(i+1) → 0. Thus by Eq. (4), we have 
τi,g − τi,g−q(i) ≈ 1. What is noteworthy is that it is true for both 
imitation and aspiration updating rules. Therefore

(τi+1,g−q(i) − τi,g−q(i))︸ ︷︷ ︸
D1

= T −(i)

T +(i)︸ ︷︷ ︸
γi

(τi,g−q(i) − τi−1,g−q(i)), (5)

(τi+2,g−q(i+1) − τi+1,g−q(i+1))

= T −(i + 1)

T +(i + 1)
(τi+1,g−q(i+1) − τi,g−q(i+1))︸ ︷︷ ︸

D2

. (6)



Download English Version:

https://daneshyari.com/en/article/1860784

Download Persian Version:

https://daneshyari.com/article/1860784

Daneshyari.com

https://daneshyari.com/en/article/1860784
https://daneshyari.com/article/1860784
https://daneshyari.com

