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We investigate the Casimir force for a system composed of two thick slabs as substrates within three 
different homogeneous layers. We use the scattering approach along with the Matsubara formalism in 
order to calculate the Casimir force at finite temperature. First, we focus on constructing the reflection 
matrices and then we calculate the Casimir force for a water–lipid system. According to the conventional 
use of silicon as a substrate, we apply the formalism to calculate the Casimir force for layers of Au, VO2, 
mica, KCl and foam rubber on the thick slabs of silicon. Afterwards, introducing an increasing factor, 
we compare our results with Lifshitz force in the vacuum between two semispaces of silicon in order 
to illustrate the influence of the layers on intensifying the Casimir force. We also calculate the Casimir 
force between two slabs of the forementioned materials with finite thicknesses to indicate the substrate’s 
role in increasing the obtained Casimir force. Our simple calculation is interesting since one can extend 
it along with the Rigorous Coupled Wave Analysis to systems containing inhomogeneous layers as good 
candidates for designing nanomechanical devices.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Casimir effect [1], resulting from modifying the vacuum 
fluctuations due to the insertion of the boundaries, has entered a 
new era of novel accurate measurements. According to the rapid 
progress of the nanotechnology, the Casimir force has been in-
troduced to offer new possibilities for designing nanomechani-
cal systems [2,3]. The Lifshitz formula for two dielectric semis-
paces at arbitrary temperature has been investigated providing the 
Casimir force for real bodies in [4]. Considering two periodic di-
electric gratings, Lambrecht and Marachevsky have presented an 
exact calculation to obtain the Casimir energy in [5]. It is worth 
mentioning that the comparison between their theoretical calcu-
lations and the measurements performed by Chan et al. [6] for 
grating-sphere geometry, manifests a meaningful agreement. Based 
on the scattering approach [7–11], the researchers have inves-
tigated the finite temperature Casimir interaction force between 
two periodic nanostructures using the modal approach in [12] and 
they have also illustrated the flexibility of this formalism. The 
Casimir energy between a plate and a nanostructured surface at 
arbitrary temperature has been calculated in the framework of the 
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scattering theory in [13] and as a significant consequence of this 
investigation, it is illustrated that for grating geometries the con-
tribution of the thermal part of the Casimir energy is intensified at 
small separation distances. Modeling grating as a dielectric func-
tion depending on the space and frequency as well as using a vari-
able phase method, Graham in [14] has presented an appropriate 
approach to investigate the Casimir effect for gratings with deep 
corrugations. In 2007, utilizing an analysis of the phase shift of 
the vacuum fields due to propagating through the materials, Lam-
brecht et al. have presented a detailed calculation for the Casimir 
force between silicon and gold slabs of different thicknesses with 
respect to both Drude and plasma models for the dielectric func-
tion of gold [15]. Several studies are done with the purpose of 
investigating the influence of the slab thicknesses on the Casimir 
effect, of which we are going to mention some: In [16], Klim-
chitskaya and Mostepanenko have studied the Casimir energy for 
metallic films between dielectric plates. They have also performed 
numerical calculations for Au thin films in vacuum or sandwiched 
between two semispaces of sapphire. In addition to the main sub-
ject of the study that is the Casimir force between slabs of in-
trinsic and doped silicon, Pirozhenko and Lambrecht in [17] have 
performed numerical computations for a VO2 film on a sapphire 
substrate with a gold layer on the silicon slab. Using the Drude–
Smith model for the dielectric function of Au thin films, Sirvent 
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Fig. 1. (a) A system composed of two half spaces of a material characterized with the permittivity εR (ω) as substrates within three alternating homogeneous layers described 
by permittivities εB (ω) and εP (ω). (b) Plot of the Casimir interaction force per unit area as a function of separation distance L for the configuration of Fig. 1(a) at T = 300 K. 
Here we have considered water and lipid for the alternating layers with a = 4 nm as the thickness of medium P .

has investigated the Casimir force between these films near the 
critical thickness in [18].

In this work, we want to investigate intensifying the Casimir 
force due to the presence of a layer on the substrate. For this 
purpose, we consider two semispaces as substrates and a sym-
metric array composed of three homogeneous layers of alternating 
materials in between as depicted in Fig. 1(a). To start the study, 
we assume the semispaces to be water and the alternating layers 
in between to be water and lipid. Considering the advantages of 
the scattering approach including that the divergency occurring in 
calculating the Casimir energy does not appear in the scattering 
formalism as well as the fact that with the advent of this ap-
proach, the efficient evaluation of the Casimir effect has been made 
possible, we initiate from a scattering approach along with the 
Matsubara formalism to determine the Casimir force for Fig. 1(a) 
at finite temperature. First, introducing longitudinal components of 
the electric and magnetic fields, we impose the continuity bound-
ary condition and focus on the construction of reflection matrices 
for the profile of Fig. 1(a) and then, we calculate the Casimir force 
for the forementioned water–lipid system as an instance that is in 
a good agreement with the results evaluated by Podgornik and his 
colleagues in [19,20]. They have obtained this result for the inter-
action of two isolated lipid layers when they have explored the 
nonadditivity of the Casimir effect in the multilamellar geometries 
applying an algebra of 2 × 2 matrices. Afterwards, we concentrate 
on the main part of the investigation which is exploring the effect 
of the layers on intensifying the Casimir force. For this purpose, 
assuming the importance of silicon in constructing miniaturized 
electromechanical devices and its conventional use as a substrate, 
we consider layers of different materials including Au, VO2, mica, 
KCl, and foam rubber (as a dilute media) on thick slabs of silicon 
and calculate the Casimir force in the inner medium of Fig. 1(a) 
which is supposed to be vacuum. Results of our calculations illus-
trate that increasing the layer thickness yields into a downward 
trend in the value of the Casimir force for insulators; however, it 
results in increasing the Casimir force for Au. Introducing the in-
creasing factor r, we perform a comparison between our results 
and the Lifshitz force between two thick slabs of silicon in the 
same separation distance, with the purpose of investigating the ef-
fect of the layers on intensifying the casimir force. According to our 
calculations, in spite of the downward trend of the Casimir force 
for insulators, this increasing factor (r) is greater than one for all of 
the investigated layers. Our calculations depict that, this increasing 
factor grows as a result of increasing the thickness of the layers 
and that in the case of having materials with greater zero fre-
quency permittivities, this intensification occurs significantly. We 
also calculate the Casimir force between two similar slabs with fi-
nite thicknesses to indicate the role of substrates in increasing the 
Casimir force. Our results of depicting the intensification of the 

Casimir force due to the presence of a layer, even a nanometer-
thick layer, on the substrate would be applicable for experimental 
studies of the Casimir effect and also for designing nanomechani-
cal devices driven by the Casimir force. It is worth mentioning that, 
the scattering approach which allows one to consider non-trivial 
geometries at finite temperature together with a realistic descrip-
tion of the material properties, permits us to calculate the Casimir 
energy for a configuration with a periodic structure in its layers 
(i.e. inhomogeneous configuration). This approach along with the 
Rigorous Coupled Wave Analysis (RCWA) method [5,13,21] enables 
us to investigate such a configuration in future with the purpose 
of utilizing that in designing nanomachines.

2. Constructing reflection matrices

Let us consider two half-space mediums with a symmetric ar-
ray composed of three layers of alternating materials in between, 
as depicted in Fig. 1(a). B , i.e. the inner homogeneous region, is 
the one defined as the medium in 0 < z < L with the permit-
tivity εB(ω). Over this, there exists another homogeneous region, 
L < z < L + a, labeled P with the permittivity εP (ω) and above 
that we have an R-labeled homogeneous region characterized by 
the permittivity εR(ω). Below region B , in −a < z < 0, symmet-
ric to the upper half of Fig. 1(a), there is another medium P
described with the permittivity εP (ω) and under that we have an-
other R-region characterized by εR(ω).

We assume a plane wave propagating along the z-axis which 
is reflected and transmitted through the nearby layers. Consider-
ing that this configuration is t , x and y invariant, we can extract a 
factor ei(kxx+ky y−ωt) from all components of the electromagnetic 
fields. In the absence of the upper half of Fig. 1(a), we intro-
duce the y-components of the electric and magnetic fields in the 
medium B as:{

E B
y = Ie

B e−iγB z + Re
B eiγB z

H B
y = Ih

B e−iγB z + Rh
B eiγB z

(1)

where Ie(h)
B and Re(h)

B are the incident and reflection coefficients 
of the electric (magnetic) waves. γB indicates the z-component of 
the wave vector in the medium B , which can be introduced for the 
medium j = B , P or R as

γ j = i

(
−ε j(ω)

ω2

c2
+ k2

x + k2
y

)1/2

(2)

In this relation ω is the frequency, c denotes the speed of light and 
kx and ky are the longitudinal components of the wave vectors. We 
assume the relative permittivity of the region ε j(ω) as a function 
of frequency including dissipation.
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