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Nosé’s pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though 
several groups have developed successful doubly-thermostated models, single-thermostat models have 
failed to generate Gibbs’ canonical distribution for the one-dimensional harmonic oscillator. A 2001 
doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of 
these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. 
We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov 
instability as diagnostic tools.

© 2015 Elsevier B.V. All rights reserved.

1. Single-variable thermostats and Gaussian ergodicity

In 1984 Hoover explored the application of the Nosé–Hoover 
version [1] of Nosé’s canonical motion equations [2,3] to a har-
monic oscillator at thermal equilibrium with coordinate q, momen-
tum p, temperature T , and thermostat variable ζ :

{ q̇ = p ; ṗ = −q − ζ p ; ζ̇ = [ p2 − T ]/τ 2 } [ NH ] .

Posch, Hoover, and Vesely found that this model partitions the 
(q, p, ζ ) phase space into many separate toroidal regions embed-
ded in a chaotic sea [4]. The complexity and the stiffness of the 
solutions increase rapidly as the thermostat response time τ is re-
duced. In addition to equilibrium applications analogous motion 
equations can be used to thermostat irreversible nonequilibrium 
simulations such as steady shear and heat flows. The harmonic 
oscillator can generate steady-state heat flow problems if the tem-
perature varies in space [5,6]:

1 − ε < T = T (q) = 1 + ε tanh(q) < 1 + ε .

Here ε is the maximum value of the temperature gradient, 
(dT /dq), to which the oscillator is exposed. It can be viewed as 
the strength of nonlinearity, and depending on its value, one can 
move from the equilibrium regime (where ε = 0) to the nonequi-
librium regime (where ε > 0).
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Somewhat paradoxically, the Nosé–Hoover motion equations as 
well as all the others we consider here are time-reversible, even 
away from equilibrium. That is, any time-ordered sequence of 
(q, p, ζ ) points can be reversed either [1] by changing the sign of 
dt in the integrator, or [2] by changing the signs of the (p, ζ ) vari-
ables. The harmonic oscillator equations also have mirror symme-
try. Changing the signs (+q, +p) ←→ (−q, −p) gives an additional 
pairing of solutions.

Apart from being time-reversible, a good thermostat must re-
sult in ergodic dynamics. Ergodicity of the dynamics connects dy-
namical averages with corresponding Boltzmann–Gibbs phase av-
erages. In describing the results of the present work, we have used 
Ehrenfests’ idea of “quasiergodicity”, where the dynamics eventu-
ally comes arbitrarily close to each feasible point, interchangeably 
with “ergodicity”.

For the equilibrium Nosé–Hoover harmonic oscillator, the Gaus-
sian distribution is the stationary solution of the Liouville’s phase-
space continuity equation:

v = ṙ = (q̇, ṗ, ζ̇ ) −→ (∂ f /∂t) = −∇r · ( f v) ≡ 0

−→ f (q, p, ζ ) ∝ e−q2/2T e−p2/2T e−ζ 2τ 2/2T .

On the other hand, numerical work gives two kinds of solutions, 
either quasi-periodic tori, with all Lyapunov exponents being zero 
or a single chaotic, Lyapunov-unstable sea. The global dynamics, 
therefore, either remains confined within the tori, or occupies 
the chaotic sea separated from the tori, depending upon the ini-
tial conditions, the temperature T , and the response time τ . In 
other words the presence of two sets of global maximal Lyapunov 
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exponents – one positive and another zero, indicates that a trajec-
tory starting from an arbitrary initial condition is unable to explore 
the neighborhood of the entire feasible phase-space. As a result, 
the phase-space gets partitioned into at least two noncommuni-
cating regions, violating the metric indecomposibility of the phase 
space – the necessary and sufficient condition for ergodic dynam-
ics according to Birkhoff’s theorem. Thus the singly-thermostated 
oscillator equations are not “ergodic”, so that Gibbs’ statistical me-
chanics is unable to describe the oscillator’s properties. For the 
next 15 years, which included many failed attempts, no singly-
thermostated oscillator models were found to be ergodic.

This letter announces our recent achievements toward the long-
standing goal of ergodic singly-thermostated oscillator models. We 
have carried out a comprehensive exploration of a previous model 
claimed to be ergodic, and found that it is not. As a result of 
those investigations we have found a path leading to a singly-
thermostated and physically motivated ergodic model for the har-
monic oscillator. We lay out the details of these discoveries in what 
follows and encourage the reader to help explore the new areas 
opened up by our work.

2. Ergodicity is typically absent in the SF model

In 2001 Sergi and Ferrario [SF] announced that they had found 
an ergodic thermostated oscillator model [7]. In addition to the 
oscillator coordinate, momentum, and thermostat variable (q, p, ζ )

their model includes a parameter ν which can be either positive 
or negative:

q̇ = p(1 + ζν) ; ṗ = −q − ζ p ; ζ̇ = [ p2 − T − qpν ]/τ 2 ; η̇ = ζ.

Here, and in what follows, we will ignore the fact that SF actually 
solve the above four equations, not just the three shown below:

{ q̇ = p(1 + ζν) ; ṗ = −q − ζ p ; ζ̇ = p2 − T − qpν } [ SF ].
This is because their work was based on a Hamiltonian with two 
degrees of freedom. Consider a particular initial condition (q, p, 
ζ ) that evolves in some time t to a unique (q′ , p′ , ζ ′). The lat-
ter variables do not depend on the initial value of η, which could 
be given or not, arbitrarily. The fourth equation, for the evolution 
of a variable which is the time integral of ζ , plays no role at all 
in the dynamics of (qpζ ) and can so be ignored, which we do 
throughout. This extraneous variable obscured the fact that SF im-
plicitly claimed ergodicity for a singly-thermostated oscillator. As a 
result, this desirable feature of their relatively widely-cited paper 
has been previously ignored. However, as a consequence of remov-
ing η̇, the symplecticity of the dynamics disappears.

Like the NH model the SF oscillator has mirror symmetry 
(+q, +p) ←→ (−q, −p). In addition the time reversibility of the 
Sergi–Ferrario equations requires that the functions p and ζ , as 
well as the parameter ν , all change sign in the reversed motion 
with the coordinate values unchanged. For clarity we have replaced 
Sergi and Ferrario’s parameter “τ ” by ν throughout the present 
work. This change emphasizes that an increase in |ν| reduces the 
response time of the thermostat terms.

For the remainder of this study, we choose to keep τ = 1. Usu-
ally τ , which represents the relaxation time of the dynamics, is 
chosen according to the relation [12]: τ 2 = kT /ω2, where ω is 
the angular frequency of the system. In our present case, since the 
system comprises a single harmonic oscillator with unit mass and 
spring constant, ω = 1. Additionally, most of the work ascertaining 
the ergodicity of thermostatted dynamics has taken the relaxation 
time to be unity. We wish to highlight the fact that if the relax-
ation time is chosen too large, it will have no effect on the system 
dynamics, while if τ is chosen too small, the equations become too 
stiff.

Fig. 1. The torus shown here results from the initial conditions (q, p, ζ ) = (1, 1, 1)

using Sergi and Ferrario’s original equations with ν = +1. The local values of the 
largest Lyapunov exponent on the torus are indicated by color: −1.06 (blue) <
λ1(t) < 1.89 (red). Its time-averaged mean value, λ1 = 〈λ1(t)〉 is zero. The tem-
perature is unity. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Sergi and Ferrario claimed that their four [but actually only 
three, for the reason just cited] oscillator equations [7] were er-
godic (filling out the entire three-dimensional Gaussian distribu-
tion) for ν > 0.5. That surprising claim sparked the present work. 
To begin our exploration of their model we carried out a simula-
tion of the SF equations with the temperature T and parameter 
ν both equal to unity and with the initial conditions (q, p, ζ ) =
(1, 1, 1). Fig. 1 shows the resulting torus, colored according to the 
local flow instability. Evidently this special case of the SF model is 
definitely not ergodic.

The difficulty in isolating a small embedded torus by looking at 
the global dynamics [13] prompted us to investigate the Poincaré 
section at ζ = 0. In fact, any other typical Poincaré section would 
have served our purpose. Recall that Gibbs’ probability density is 
Gaussian in both q and p. Accordingly sections in q and p (as well 
as in ζ ) that are far from origin are atypical, and may not give any 
useful results. So long as the section chosen is a typical one, the 
dynamics within it can be studied to understand ergodicity.

Rather than abandoning the SF approach we also looked for 
modifications that might be ergodic. Changing the parameter ν
from 1 to 2 or 3 or 4 or 5 or 6 and applying due diligence led in 
each case to the discovery of nested tori. Typically the tori pen-
etrate the plane ζ = 0 in four widely-separated distinct places. 
Fig. 2 illustrates these “period-four” equilibrium points for the SF 
equations. Just as in the other figures the online version is colored 
according to the local value of the largest of the three Lyapunov 
exponents, λ1(t). We denote the long-time average value of this 
exponent by λ1 ≡ 〈λ1(t)〉.

Holes in the chaotic sea are most easily found visually. Then, 
zooming in on such a hole the central point corresponding to a 
periodic orbit can be found. By first looking at cross sections dec-
orated by a million penetration points and then zooming in on the 
holes we can obtain precise six-figure estimates for the (q, p, 0)

points that lie at the center of each hole, on the central periodic 
orbit. Viewed in the (q, p, 0) plane, diligent searches showed that 
the six choices of ν shown in Fig. 2, all include simple tori cen-
tered on a periodic orbit and embedded in a chaotic sea. Looking 
at the figure, the relatively small but clearly visible holes can be 
seen for ν = 2, 4, 5, and 6. The large irregular holes for ν = 1 form 
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