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By requiring unambiguous symmetric quantization leading to the Dirac equation in a curved space, 
we obtain a special representation of the spin connections in terms of the Dirac gamma matrices 
and their space–time derivatives. We also require that squaring the equation gives the Klein–Gordon 
equation in a curved space in its canonical from (without spinor components coupling and with no first 
order derivatives). These requirements result in matrix operator algebra for the Dirac gamma matrices 
that involves a universal curvature constant. We obtain exact solutions of the Dirac and Klein–Gordon 
equations in 1 + 1 space–time for a given static metric.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the connection between quantum theory (me-
chanics and fields) and gravity continues to be one of the main 
tasks in contemporary physics that proved to be highly nontriv-
ial and very demanding. Formulation of quantum gravity is still 
far from being successful or even satisfactory. A consistent unifica-
tion of quantum theory and gravity must first address the state of 
a single elementary particle in a gravitational background. Conse-
quently, sustained efforts have been applied to find a systematic 
and appropriate formulation of the relativistic equation of mo-
tion for the lowest spin particles (spin-0 and spin- 1

2 ) in a curved 
space–time. That is, the extension of the Klein–Gordon and Dirac 
equations from flat space to a curved space. One of the interest-
ing problems in this connection is the extent to which spin has 
an effect on the quantum gravitational phenomena. For example, 
it has been shown in [1] that the spectra of spin-0 and spin- 1

2
particles in a constant gravitational field differ by an amount of √

mgh̄c, where m is the rest mass of the particle and g is the ac-
celeration of gravity. Although weak, this is a significant difference 
that shows the influence of spin in gravitational interaction. More-
over, unambiguous observation of the influence of gravity on the 
behavior of fermions is one of the major motivations to study the 
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Dirac equation in curved space. An example is the quantum effects 
on neutrons in a classical gravitational field [2–6]. In recent years, 
investigation of Dirac particles in virtual gravitational fields have 
been at the center of interest in condensed matter physics in the 
context of studies of the amazing properties of graphene [7–10]. It 
was shown that it is possible to simulate some of these properties 
by coupling the Dirac fermions to an “artificial” gravitational field; 
specifically, to consider the physics of massless Dirac particles in 
a 2 + 1 curved space–time. These results exhibit rare and direct 
connection between gravity and quantum mechanics and consti-
tute another strong motivation to the study of the Dirac equation 
in curved space.

The greatest difficulties in these studies arise from the covari-
ant generalization of the Dirac equation [11,12] and its uniqueness. 
Due to the complexity of the Dirac equation (a system of coupled 
partial differential equations), the number of exact solutions even 
in the special theory of relativity remained very limited. There are 
two types of difficulties that occur in the solution of the Dirac 
equation in special relativity. The first is due to the physical nature 
of the problem; in particular, the geometry of the external field. 
The second is purely mathematical and is related to the choice 
of coordinates. On the other hand, a complete theory of separa-
tion of variables for the Dirac equation in a curved space–time 
has yet to be developed. Nonetheless, it is common knowledge 
that separation of variables in the Dirac equation is easier for the 
massless case and in the context of the Kerr geometry [13–15]. 
The connection between separation of variables and matrix first-
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order differential operators commuting with the Dirac Hamiltonian 
has traditionally been the prime focus in such developments. How-
ever, in [16] the separation problem was solved provided that the 
squared Dirac equation (or the Klein–Gordon equation) is reduced 
to two independent differential equations of second order (i.e., it 
admits diagonalization).

The equation of relativistic quantum mechanics was formu-
lated in the early part of last century by Paul Dirac [17]. It de-
scribes the state of electrons in a way consistent with quantum 
mechanics and special relativity. The physics and mathematics of 
the Dirac equation is very rich, illuminating and provides a the-
oretical framework for different physical phenomena that are not 
present in the nonrelativistic regime such as the Klein paradox, 
super-criticality [17–19] and the anomalous quantum Hall effect 
in graphene [20,21]. The free Dirac equation in its classical rep-
resentation is the square root of Einstein’s relativistic statement 
p2 = m2c2, where p is the space–time linear momentum vector. 
It is written as γ μpμ = mc, where {γ μ}n

μ=0 is a set of square 
matrices that are related to the metric tensor of the n + 1 space–
time by {γ μ, γ ν} = 2gμν1 and repeated indices are summed over. 
In flat space, the metric is constant and, thus, the Dirac gamma 
matrices {γ μ} are independent of space and time. Therefore, with 
pμ → ih̄∂μ , quantization is straightforward and the Dirac equation 
for a free spinor is written as ih̄γ μ∂μψ = mcψ , where ψ is the 
multi-component wavefunction. However, in a curved space, where 
the metric is not constant, these matrices are space–time depen-
dent. Thus, quantization of the classical term γ μ(x)pμ becomes 
a nontrivial issue that may involve ordering ambiguity. However, 
it is known that symmetric quantization of the classical phase 
space function product f (x)g(p) is not ambiguous if and only if 
f (x) or g(p) is linear; which is the case here. Specifically, sym-
metric quantization of the classical phase space product f (x)p is 
1
2 ( f α pf β + f β pf α), where α and β are arbitrary real parameters 
such that α + β = 1. In configuration space where p → ih̄ d

dx , sym-
metric quantization gives

1

2

(
f α pf β + f β pf α

) = ih̄ f (x)
d

dx
+ i

2
h̄df /dx, (1)

which is independent of the choice of parameters. Therefore, sym-
metric quantization of γ μ(x)pμ gives ih̄γ μ(x)∂μ + i

2 h̄(∂μγ μ). On 
the other hand, covariant generalization of the Dirac equation in 
a curved space is achieved by introducing the covariant deriva-
tive via the substitution ∂μ → ∂μ + Γμ , where {Γμ} are the n + 1
spin connection matrices. Thus, γ μ(x)pμ → ih̄γ μ(x)∂μ + ih̄γ μΓμ . 
Therefore, nominal compatibility of symmetric quantization with 
general covariance gives a special representation of the contracted 
spin connections γ μΓμ in terms of the space–time divergence of 
the gamma matrices. More precisely,

γ μΓμ = 1

2
∂μγ μ. (2)

The covariant generalization of the Dirac equation to curved space 
was independently developed long ago by Weyl [22] and by Fock 
[23], which is known in the literature as Dirac–Fock–Weyl (DFW) 
equation. Recently, two alternative versions of the Dirac equation 
in a curved space–time were proposed in [24]. These obey the 
equivalence principle in a direct and explicit sense, whereas the 
DFW equation obeys the same only in an extended sense. The 
present work, which is complementary to those cited above, may 
constitute a measurable contribution in the pursuit of a systematic 
formulation of the Dirac and Klein–Gordon equations in a curved 
space. Specifically, we use the special representation of the spin 
connections obtained above to write the Dirac equation in curved 
space. We will also introduce a matrix operator algebra involving 
the Dirac gamma matrices such that the Klein–Gordon equation 

that results from squaring the Dirac equation is in its canonical 
form with no coupling among the spinor components and with-
out first order derivatives. As a result, we find that arbitrary spin 
connections and/or vierbeins are not needed for writing down the 
Dirac equation in a curved space. It is true that this problem has 
long been treated in full generality with the use of vierbeins and 
spin connections that make clear how covariance under general 
coordinate and local Lorentz transformations is achieved. However, 
the prescription suggested here set aside vierbeins and spin con-
nections in favor of a simple and consistent formulation of the 
Dirac equation in a curved space. Thus, in the language of vier-
beins and spin connections, the present formulation leads to the 
Dirac equation in a suitable gauge (e.g. in a given choice of tan-
gent frame). The option of not using vierbeins has appeared in the 
earlier literature [25–29] though often without any proof that spin 
connections exist.

We conclude this work with an example where we choose a 
static metric in 1 +1 space–time and obtain exact solutions for free 
spin-0 and spin- 1

2 relativistic particles in this gravitational back-
ground. In the following section, we start by defining the matrix 
operator algebra and point out its correspondence with the quan-
tum mechanical algebra and the classical Poisson bracket algebra.

2. Operator algebra for the Dirac gamma matrices:
Dirac and Klein–Gordon equations

The covariant generalization of the free Dirac equation (iγ μ∂μψ

= mψ ) in a curved space–time of dimension n + 1 reads as follows

iγ μ(∂μ + Γμ)ψ = mψ, (3)

where we have adopted the conventional relativistic units h̄ =
c = 1. Now, we propose the following one-parameter Dirac equa-
tion in a curved space

i
(
γ μ∂μ − λΩ

)
ψ = mψ, (4)

where λ is a dimensionless parameter and for λ = −1, Ω = γ μΓμ . 
The transformation properties of the space–time dependent matrix 
Ω is the same as that of γ μΓμ and results from the covariance 
of Eq. (4) under general coordinate transformation and local spinor 
transformations. If we adopt the representation of the spin connec-
tions given by Eq. (2), then Ω = 1

2 ∂μγ μ . Iteration of Eq. (4) (i.e., 
squaring the equation) should result in the Klein–Gordon equation 
which reads as follows[−γ μγ ν∂μ∂ν + (−/∂γ ν + λ

{
Ω,γ ν

})
∂ν + λ/∂Ω − λ2Ω2]ψ

= m2ψ, (5)

where /∂ = γ μ∂μ . However, the conventional Klein–Gordon equa-
tion in a curved space is normally written as[

1√−g
∂μ

(
gμν√−g∂ν

) + m2
]
ψ

= [
gμν

(
∂μ∂ν + Γ σ

μν∂σ

) + m2]ψ = 0, (6)

where g is the determinant of the metric tensor, Γ σ
μν =

1
2 gσρ(∂μgρν + ∂ν gρμ − ∂ρ gμν) and {gμν} are elements of the in-
verse of the metric tensor. In Eq. (6), we used the logarithmic 
derivative identity: 1√−g

∂μ
√−g = Γ σ

μσ . Compatibility of this ver-

sion of the equation with Eq. (5) results in the following algebra 
for Ω and the gamma matrices

/∂γ μ = λ
{
Ω,γ μ

} + gσνΓ
μ
σν, (7a)

/∂Ω = λ

2
{Ω,Ω}. (7b)
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