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We study theoretically the conditions required for the appearance of a superradiance transition in 
graphene. The electron properties of graphene are described in the single pz-orbital tight-binding 
approximation, corresponding to the two interacting sub-lattices. The corresponding model is reduced 
to the effective two-level pseudo-spin 1/2 system. For each sub-lattice we introduce the electron transfer 
rate of escape into a continuum. We demonstrate that, under some conditions, the superradiance occurs, 
and it corresponds to the maximal quantum coherent escape to the continuum.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The superradiance transition (ST) was first described by Dicke 
in 1954 [1], when the ensemble of N non-directly interacting two-
level atoms interacted through the self-consistent radiation field in 
a cavity. In this case, the ST results in a significant enhancement of 
the spontaneous radiation due to quantum coherent effects. Later 
it was demonstrated that the quantum coherent effects, similar to 
the ST, occur in many quantum optical systems, nuclear systems 
(heavy nuclei decay), nano- and bio-systems [2–7]. The ST usually 
occurs when the discrete (intrinsic) states of the system interact 
coherently with the continuum spectra (sinks). Then, an adequate 
approach for describing the eigenstates and the dynamics of the 
system can be based on an effective non-Hermitian Hamiltonian 
for intrinsic states [2–7]. In this case, the eigenenergies of the non-
Hermitian Hamiltonian become complex.

Recently, a steady-state superradiant laser with less than one 
intracavity photon was demonstrated with rubidium-87 atomic 
dipoles [8]. Large enhancement of Förster resonance energy trans-
fer on graphene platforms was discussed in [9]. In [10], a super-
radiant plasmonic lasing with a giant gain at the plasmon modes 
in graphene was theoretically analyzed in a wide THz frequency 
range.

Qualitatively, the ST occurs when the resonances begin to over-
lap – the spacing between the resonances becomes of the order of 
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the sum of half-widths of these resonances. With further overlap-
ping of resonances, segregation of the eigenenergies takes place, 
depending on their decay widths. Namely, the wide superradiance 
eigenstates provide rapid and coherent decay of the initially pop-
ulated state in the continuum. The subradient eigenstates, with 
narrow decay widths, survive for a relatively long time. It is also 
worth clarifying here that for the ST to occur, not a presence 
of collective effects (many degrees of freedom) is crucial, but a 
presence of quantum coherent effects. Indeed, the ST can occur 
for a single exciton in light-harvesting bio-complexes with rela-
tively small number of light-sensitive molecules, and even in a 
single two-level system interacting with the continuum. All these 
effects are described in details in [2–7,11]. (See also references 
therein.)

In this paper, we determine the conditions at which the ST oc-
curs in a single-layer graphene material. We demonstrate how the 
ST in this system is related to both the occurrence of an excep-
tional points (EP), when complex eigenvalues coincide, and to the 
overlapping of two resonances. Even though, instead of graphene 
some other semimetals and semiconductors can be used, we be-
lieve that, to demonstrate the discussed in this paper effects, 
a single-layer graphene is the most attractive material. Indeed: 
(i) This material has two bands (valence and conduction) which 
allows one to reduce the mathematical model to the relatively 
simple effective two-level system; (ii) These two bands are rep-
resented by two cones touching at the Dirac point (for undopped 
graphene). The presence of the Dirac point is important for our 
consideration, as this allows one to analyze the ST both in the 
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Fig. 1. Graphene two-dimensional lattice, with two atoms, A (red) and B (green), 
in a unit cell. Primitive unit vectors: a1,2 = (a/2)(

√
3, 3), b = (0, a), a ≈ 1.42 Å. (For 

interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

vicinity of the EP (when the standard criterion of resonance over-
lapping does not work) and in the absence of the EP (when the 
criterion of resonance overlapping can be used).

We also show that, under some conditions on the parameters 
and initial population, the maximal efficiency of the electron trans-
fer (ET) into the sink is related to the superradiance state. We 
compare the ST criterion based on the overlapping of resonances 
and on the occurrence of the EP. We also demonstrate the influ-
ence of noise on the performance of the ET into sinks.

This paper is organized as follows. In Section 2, we introduce 
the mathematical model. In Section 3, we describe the main prop-
erties of the ST in the vicinity of the degeneracy. The ET dynamics, 
in the vicinity of the EP, is presented in Section 4. In Section 5, the 
noise-assisted electron transfer in the superradiance regime is de-
scribed. In the Conclusion (Section 6), we summarize our results 
and discuss a possible future research in this direction.

2. Description of the model

The structure of a single atomic layer graphene can be de-
scribed by the honeycomb lattice which consists of two triangular 
Bravais sub-lattices, represented in Fig. 1 by nonequivalent A (red) 
and B (green) carbon atoms, which create a unit cell [12,13]. Both 
sub-lattices have the periodic structures, and are shifted by a vec-
tor, b = (0, a), a ≈ 1.42 Å, which connects A and B atom in the 
unit cell. In a carbon atom, six electrons occupy the 1s2, 2s2, and 
2p orbitals. From them, four valence electrons are responsible for 
structural and electronic properties. One of the valence electrons 
of each A and B atoms occupies the pz orbital, which is orthog-
onal the graphene plane. The hybridization of these pz orbitals 
provides the formation of the π -bands in graphene. Then, the elec-
tron properties of graphene can be described within a single pz
orbital tight-binding (TB) model [13]. Using the TB approximation, 
one can show that the effective single-electron Hermitian Hamilto-
nian is reduced to the two-level pseudo-spin one-half system. The 
projections of pseudo-spin are associated with two sub-lattices.

In graphene, the dispersion relation, E(k) (where k is the wave 
vector), has some specific properties: the Fermi level corresponds 
to E(k) = 0, and the valence and conduction bands touch each 
other in the first Brillouin zone at six points. Each of these points 
provides a “conical intersection” known also as the “diabolical 
point” (DP) [14,15]. (See Fig. 2.)

According to [13], in the k-representation the dynamics of the 
electron, in the vicinity of the DP, can be described by the follow-
ing Hamiltonian:

H0 =
(

0 h̄v F (qx − iqy)

h̄v F (qx + iqy) 0

)
, (1)

where v F = 3|t|a/2h̄ is the Fermi velocity. Here t ≈ −2.8 eV, is the 
hopping integral for nearest neighbor atoms, A and B , with coordi-

Fig. 2. The band structure of graphene. The valence and conduction bands touch 
each other in six DPs, where E(k) = 0.

nates, RA and RB . We use the following notations: the state, |1〉 =(
1
0

)
, corresponds to the population of the sub-lattice A, and the 

state, |2〉 =
(

0
1

)
, corresponds to the population of the sub-lattice 

B . The Hamiltonian, H0, has the eigenvalues, E± = ±h̄v F |q|. The 
corresponding eigenstates are: |+〉 = (1/

√
2)(e−iϕ/2|1〉 + eiϕ/2|2〉)

(conduction band), and |−〉 = (1/
√

2)(e−iϕ/2|1〉 −eiϕ/2|2〉) (valence 
band), where ϕ = arg(qx + iqy).

Suppose that each discrete state (related to the sub-lattice, 
A and B) is coupled to a continuum – continuous energy band, 
which could originate due to impurities or other mechanisms. 
Suppose, that we allow an electron to tunnel to the continuum 
from the sub-lattices, A and B , with the ET rates, �1 and �2, 
correspondingly. Then, the quantum dynamics of the ET can be 
described by the following effective non-Hermitian Hamiltonian, 
H̃ =H− iW , where H is the dressed Hamiltonian, H0, and

W = 1

2

(
�1 0
0 �2

)
. (2)

We find,

H̃ = λ0

2

(
1 0
0 1

)
+ 1

2

(
ε − i� V ∗

V −ε + i�

)
, (3)

where λ0 = ε0 − i�0, ε0 = ε1 + ε2, �0 = (�1 + �2)/2, V =
2h̄v F (qx + iqy), ε = ε1 − ε2, and � = (�1 − �2)/2. Here, εn , is 
the renormalized energy of the state, |n〉, which usually occurs in 
the non-Hermitian Hamiltonian approach [2–6].

Note, that for pure (undoped) graphene, the “effective electron 
masses”, ε1,2 = 0, for both sub-lattices. This allows us to study the 
ST in the vicinity of the EP. However, due to the finite bandwidths, 
associated with the sinks, not only the ET rates, �1,2, appear, but 
also the small “effective electron masses”, ε1,2, may occur. The 
condition, ε1,2 �= 0, takes place also in doped graphene and in 
semiconductors. Both cases, ε1,2 = 0 and ε1,2 �= 0, are analyzed be-
low in relation to the ST.

Below, in numerical simulations, we choose h̄ = 1. All energy-
dimensional parameters are measured in ps−1 ≈ 0.66 meV. Time is 
measured in ps. For example, if we choose the experimentally as-
sessable parameters [13], |q| = 104 cm−1 and v F = 108 cm/s, we 
have: |V | = 2 ps−1 ≈ 1.32 meV. The ET rates are varied in the re-
gion: 0 ≤ �1,2 ≤ 10 ps−1.

3. Superradiance transition

The bi-orthogonal eigenstates of the effective non-Hermitian 
Hamiltonian, H̃, provide a convenient basis in which the eigen-
value problem can be formulated and resolved. The solution of the 
eigenvalue problem, H̃|u〉 = Ẽ|u〉 and 〈ũ|H̃ = Ẽ〈ũ| (where |u〉 and 
〈ũ| are the right and left eigenvectors respectively), is given by

Ẽ1,2 = λ0/2 ± �/2, (4)
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