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We consider the Landau system in a canonically noncommutative phase-space. A set of generalized 
transformations containing scaling parameters is derived which maps the NC problem to an equivalent 
commutative problem. The energy spectrum admits NC corrections which are computed using the explicit 
NC variables as well as the commutative-equivalent variables. Their exact matching solidifies the evidence 
of the equivalence of the two approaches. We also obtain the magnetic length and level degeneracy, 
which admit NC corrections. We further study the Aharonov–Bohm effect where the phase-shift is found 
to alter due to noncommutativity and also depends on the scaling parameters.
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1. Introduction

In 1930, Landau analyzed the quantum dynamics of a charged 
particle moving in a background homogeneous magnetic field (to 
be referred to as the Landau system hereafter) to show that it 
poses quantized energy levels [1]. These quantized energy levels, 
dubbed the Landau levels (LLs), arise in a plethora of important 
physical scenarios – the integral and fractional quantum Hall ef-
fect [2,3], Aharonov–Bohm effect [4], different two-dimensional 
surfaces [5,6] like graphene [7,8], anyons excitations in a rotat-
ing Bose–Einstein condensate [9,10], etc., are to name but a few. 
Apart from these widespread occurrence, on a more formal note, 
the Landau problem is perhaps the prototypical example of space 
quantization where one arrives at a coordinate space following a 
noncommutative algebra, in rudimentary quantum mechanics.

To briefly review this intriguing behaviour let us consider a 
charged particle of mass m moving in the plane �x = (x1, x2) in 
the presence of a constant, perpendicular magnetic field B . The 
Lagrangian will be

L = m

2
�̇x2 − e�̇x · �A (1)

with the vector potential in the symmetric gauge given by2

Ai = − B

2
εi j x j (2)
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The Hamiltonian can be written in terms of the gauge invariant 
observable mechanical momentum �π = m�̇x = �p + e �A as

H = 1

2m
�π 2 (3)

Note that �p is the canonical momentum that may vary with gauge 
choice. Upon quantization by imposing the usual canonical com-
mutation relations it follows that the operators corresponding to 
the physical momentum have the non-vanishing quantum commu-

tators 
[
π

op
i , π

op
j

]
= ih̄eBεi j , showing that the physical momenta, 

in presence of a background magnetic field �B , belong to a noncom-
mutative (NC) momentum space. Expressing them in terms of the 
harmonic oscillator creation and annihilation operators, the energy 
eigenvalues of the Hamiltonian are the LLs

En =
(

n + 1

2

)
h̄ωc (4)

with ωc = ( eB
m ), the cyclotron frequency.3

In the limit m → 0 with fixed B or equivalently B >> m the 
mass gap between the Landau levels �ωc grows and consequently 
we get the projection of the whole spectrum onto the lowest LL. 
In this limit (1) becomes a first order Lagrangian L0 = − B

2 ẋi εi j x j
which is already expressed in phase-space with the spatial co-
ordinates x1, x2 being the canonically conjugate variables so that [

xop
i , xop

j

]
= i h̄

2B εi j . Thus we can conclude that noncommuting co-

ordinates arise in electronic systems constrained to lie in the low-
est Landau level.

3 Velocity of light is taken c = 1 throughout the paper.
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Remarkably, a direct analogy to this simple example arises in 
string theory with D-branes in background “magnetic fields” [11]. 
D-brane worldvolume can be shown to become a noncommutative 
(NC) space and a low-energy effective field theory can be arrived 
at in the point particle limit, where the string length goes to zero. 
This is known as a noncommutative field theory (NCFT) [12–20]
where the coordinate algebra induces a space–time uncertainty re-
lation and the notion of a spacetime point is replaced by a Planck 
cell of dimension given by the Planck area |θi j |. Similar NC spatial 
geometry is also known to arise in various theories of quantum 
gravity [21–24].

The low energy limit of this NCFT gives us the noncommuta-
tive quantum mechanics (NCQM) [25–44] where, we speculate that 
some relic of the Planck scale effect may be traced [20,45–48]. It 
would be indeed intriguing to see if such traces can be found in 
the Landau system itself which has such deep an analogy with the 
noncommutativity of space as we have discussed above. This prob-
lem was addressed by many authors in the literature [49–59] from 
different perspectives. In recent years, there have also been spec-
ulations of a more elaborate NC phase-space structure [60–62], so 
we carry out our entire analysis in NC phase-space for complete-
ness and generality. Our results can be readily cast into the spe-
cial case of configuration-space (spatial) noncommutativity only, 
by equating the momentum NC parameter to zero.

The primary aim of this paper is to study the Landau problem 
defined over the four-dimensional NC phase-space where operators 
corresponding to the canonical pairs, denoted by 

(
x̂i , p̂i

)
follow NC 

algebra:[
x̂i, x̂ j

] = iθi j = iθεi j ; [
p̂i, p̂ j

] = iθ̄i j = iθ̄εi j ;[
x̂i, p̂ j

] = i ˜̄hδi j . (5)

Here θ and θ̄ denotes the spatial and momentum noncommutative 
parameters and ˜̄h = h̄(1 + θθ̄

4h̄2 ) is the effective Planck’s constant. 
The usual approach in the literature to deal with such problems is 
to form an equivalent commutative description of the NC theory by 
employing some transformation which relate the NC phase-space 
variables (and the related operators) to ordinary commutative vari-
ables (operators) xi and pi satisfying the usual operator Heisenberg 
algebra[
xop

i, pop
j
] = ih̄δi j ; [

xop
i , xop

j
] = 0 = [

pop
i, pop

j
]
. (6)

In this paper we first carry out our investigation of the Landau sys-
tem using NC variables explicitly. Specifically, we check whether 
the magnetic length lB of this system and the degeneracy of the 
Landau levels [63,64] acquire corrections from the NC phase-space 
structure. Surprisingly, these aspects of the Landau system, though 
very important in context of various observable effects in experi-
mental condensed matter (e.g., the Hall effect) has not been em-
phasized much in the contemporary NC literature [49–52,54,56,58,
59]. We also compute the spectrum for the system, i.e., the phase-
space NCLL. To verify the consistency of our results, we also work 
out this NC phase-space spectrum taking the usual approach, i.e., 
by quantizing the commutative-equivalent Hamiltonian obtained 
using a set of generalized transformations (which we shall derive 
in this paper) and confront it with the former. Reassuringly, these 
two NC spectra match exactly, establishing that the present de-
scription of the Landau system is unambiguous. Note that unlike 
the non-linear maps used in [65,56,66], the change of variables 
used in this paper to obtain the commutative equivalent Hamilto-
nian are exact maps. The NC phase-space algebra (5) also differs 
from the one used in [65,56] where similar energy-spectra for the 
commutative-equivalent theory have been produced.

However, before delving into the analysis of the NC Landau 
problem, we first study the consequence of phase-space noncom-

mutativity in another important phenomena concerning the Lan-
dau system, namely, the Aharonov–Bohm (AB) effect. The signifi-
cance of the AB effect lies in the fact that it elevates our notion of 
the electromagnetic potential from being a convenient mathemat-
ical concept in Electrodynamics to a physical quantity in quantum 
mechanics. AB effect arises when one considers a beam of elec-
trons split into two parts, moving in the vicinity of a solenoid 
placed perpendicular to the plane of the beam. The recombina-
tion of these two beams of electrons results in a phase-shift in the 
interference pattern which depends on the magnetic flux enclosed 
by the two alternative beam paths. This phase-shift is observed 
even though the electron-beams move through regions in space 
devoid of any magnetic field, and only having non-vanishing vec-
tor potential, thus establishing the physicality of the latter. Since 
the electromagnetic vector potential is fixed by the gauge choice 
for a given background magnetic field in a way (see equation (2)) 
that will be essentially altered by noncommutativity, it is impera-
tive to check if the NC framework alters the observed phase-shift 
non-trivially. Further as we have chosen to work with the symmet-
ric gauge in analogy with the commutative scenario in this paper, 
we employ the usual approach of mapping the NC Hamiltonian 
of the theory to an equivalent commutative Hamiltonian (with NC 
corrections) to study the AB effect.

This article is organized as follows. In the next section we de-
rive a mapping between the NC and commutative sets of variables. 
In Section 3, we present the study of the Aharonov–Bohm effect 
in NC phase-space, specifically computing the AB phase. Along the 
way, we describe the framework of obtaining the commutative-
equivalent scenario for a theory defined over the NC phase-space. 
Section 4, contains the analysis of the Landau system in NC phase-
space. We conclude in Section 5.

2. Generalized mapping between noncommutative and 
commutative variables

In this section, we derive a generalized mapping between the 
NC and commutative sets of variables [67]. We relate the two sets 
of variables by the following equations

x̂i = aijx j + bij p j (7)

p̂i = ci jx j + dij p j (8)

where a, b, c and d are 2 ×2 transformation matrices. To determine 
the conditions that the transformation matrices should satisfy, we 
use the NC algebra (5) and the commutative algebra (6), which 
yields

adT − bcT =
˜̄h
h̄

(9)

abT − baT = θ

h̄
(10)

cdT − dcT = θ̄

h̄
(11)

where θ and θ̄ are 2 × 2 antisymmetric matrices. To proceed fur-
ther, we assume aij = αδi j , dij = βδi j , where α and β are two 
scaling constants. With these assumptions, eqs. (10) and (11) give 
the solutions for the matrices b and c as

bij = − 1

2αh̄
θi j (12)

ci j = 1

2βh̄
θ̄i j . (13)
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