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In this paper we investigate a class of natural Hamiltonian systems with two degrees of freedom. The 
kinetic energy depends on coordinates but the system is homogeneous. Thanks to this property it 
admits, in a general case, a particular solution. Using this solution we derive necessary conditions for 
the integrability of such systems investigating differential Galois group of variational equations.
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1. Introduction

It seems that the most effective methods of proving non-
integrability are based on application of the differential Galois 
theory. For Hamiltonian systems necessary conditions for the in-
tegrability in the Liouville sense are given by the Morales–Ramis 
theorem.

Theorem 1.1 (Morales-Ruiz and Ramis). Assume that a Hamiltonian sys-
tem is meromorphically integrable in the Liouville sense in a neighbour-
hood of a phase curve � corresponding to a particular solution. Then, the 
identity component G0 of the differential Galois group G of variational 
equations along � is Abelian.

For a detailed exposition and a proof see e.g. [4,5].
The above theorem has found a very effective application for 

natural systems given by the following Hamiltonian

H = 1

2

n∑
i=1

p2
i + V (q), (1.1)

where V (q) is a homogeneous function of degree k ∈ Z, and 
q = (q1, . . . , qn) and p = (p1, . . . , pn) are the generalised coordi-
nates and momenta, respectively. Let us note that for application 

* Corresponding author.
E-mail address: M.Przybylska@if.uz.zgora.pl (M. Przybylska).

of Theorem 1.1 we have to know a particular solution of the con-
sidered system. In general it is a difficult problem how to find such 
a solution. However for systems given by (1.1) with a homogeneous 
potential V (q) it is well known that if d ∈ C

n is a non-zero solu-
tion of nonlinear system V ′(d) = d, then functions

q(t) = ϕ(t)d, p(t) = ϕ(t)d, ϕ̈ = −ϕk−1, (1.2)

determine a particular solution of Hamilton’s equations. The vari-
ational equations along this solution split into a direct product of 
second order equations of the form

ẍ = −λϕ(t)k−2x, (1.3)

where λ is an eigenvalue of Hessian V ′′(d). The necessary condi-
tions for the integrability have the form of arithmetic restrictions 
on λ, see e.g. [4,5]. The crucial role in derivation of these con-
ditions plays the Yoshida change of independent variable which 
transforms equation (1.3) into the Gauss hypergeometric equa-
tion [8].

Hamiltonian (1.1) describes a particle moving under influence 
of potential forces in flat Euclidean space Rn . It is a natural to ask 
what is an analog of homogeneous systems in curved spaces. There 
is no obvious answer to this question. We have to take into account 
the form of metric of the configuration space as well as the form 
of the potential. We leave a general discussion of this problem to 
a separate paper and here we consider systems with two degrees 
of freedom given by the following Hamiltonian

H = T + V , T = 1

2
rm−k

(
p2

r + p2
ϕ

r2

)
, V = rmU (ϕ), (1.4)
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Table 1
Integrability table. Here k, m, p, q ∈Z and k �= 0.

No. k m I(k,m)

1 k = −2(mp + 1) m C

2 k ∈ Z \ {0} m Ia(k,m)

3 k = 2(mp − 1) ± 1
3 m 3q

⋃6
i=0 Ii(k,m)

4 k = 2(mp − 1) ± 1
2 m 2q Ia(k,m) ∪ I4(k,m)

5 k = 2(mp − 1) ± 3
5 m 5q Ia(k,m) ∪ I3(k,m) ∪ I6(k,m)

6 k = 2(mp − 1) ± 1
5 m 5q Ia(k,m) ∪ I3(k,m) ∪ I5(k,m)

where m and k are integers, and k �= 0. If we consider (r, ϕ) as the 
polar coordinates, then the kinetic energy corresponds to a sin-
gular metric on a plane or a sphere. We assume that U (ϕ) is a 
complex meromorphic function of variable ϕ ∈ C, and we do not 
require that U (ϕ) is periodic.

The main result of this paper is the following theorem which 
gives necessary conditions for the integrability of Hamiltonian sys-
tems given by (1.4). For its formulation we need to define the 
following sets

I0(k,m) :=
{

1

k
(mp + 1) (2mp + k)

∣∣∣ p ∈ Z

}
, (1.5)

I1(k,m) :=
{

1

2k
(mp − 2) (mp − k)

∣∣∣ p = 2r + 1, r ∈ Z

}
, (1.6)

I2(k,m) :=
{

1

8k

[
4m2

(
p + 1

2

)2

− (k − 2)2

] ∣∣∣ p ∈ Z

}
, (1.7)

I3(k,m) :=
{

1

8k

[
4m2

(
p + 1

3

)2

− (k − 2)2

] ∣∣∣ p ∈ Z

}
, (1.8)

I4(k,m) :=
{

1

8k

[
4m2

(
p + 1

4

)2

− (k − 2)2

] ∣∣∣ p ∈ Z

}
, (1.9)

I5(k,m) :=
{

1

8k

[
4m2

(
p + 1

5

)2

− (k − 2)2

] ∣∣∣ p ∈ Z

}
, (1.10)

I6(k,m) :=
{

1

8k

[
4m2

(
p + 2

5

)2

− (k − 2)2

] ∣∣∣ p ∈ Z

}
, (1.11)

and we put

Ia(k,m) := I0(k,m) ∪ I1(k,m) ∪ I2(k,m). (1.12)

Theorem 1.2. Assume that U (ϕ) is a complex meromorphic function 
and there exists ϕ0 ∈ C such that U ′(ϕ0) = 0 and U (ϕ0) �= 0. If the 
Hamiltonian system defined by Hamiltonian (1.4) is integrable in the Li-
ouville sense, then number

λ := 1 + U ′′(ϕ0)

kU (ϕ0)
, (1.13)

belongs to set I(k, m) which is defined by Table 1.

The above theorem tells us that if k = −2(mp + 1), then the 
Morales–Ramis Theorem 1.1 does not give any obstruction for the 
integrability of the considered systems. Let us notice that this is an 
infinite family of systems. For systems (1.1) with homogeneous po-
tentials only two cases of this type are such distinguished, namely 
k = ±2 [4,5].

For each pair (k, m) of integers which do not satisfy relation 
k = −2(pm + 1), p ∈ Z, Theorem 1.2 restricts admissible values λ
to the set Ia(k, m). If m is not a multiple of 2, 3, and 5 these are 
the only restrictions. Otherwise, if m is a multiple of q ∈ {2, 3, 5}, 
and k takes appropriate value, then the set of admissible values of 
λ contains additional elements. These are Cases 3–6 in Table 1.

Let us note that the above theorem remains valid for rational k
and m. In such extended version we require that k is a non-zero 
rational number, and the restriction contained in the third column 
of Table 1 can be ignored. For the proof of this extended version 
one has to apply a reasoning similar to that one used in [1].

Let us remark that there is also other possibility to generalise 
systems given by (1.1) with homogeneous potentials in such a way 
that they will admit a straight line particular solution and the 
variational equations can be reduced to a direct product of hy-
pergeometric equations. In [6] the authors consider system with 
Hamiltonian

H = T (p) + V (q), (1.14)

where T and V are homogeneous functions of integer degrees. To 
find a straight line particular solution one must solve overdeter-
mined system of nonlinear equations

T ′(c) = c, V ′(c) = c,

that has a solution only in special cases. Moreover, this generali-
sation does not have a form of a natural Hamiltonian system. In 
other words, except the case when deg T = 2, it cannot be consid-
ered as a Hamiltonian function of a point in a curved space.

2. Proof of Theorem 1.2

Equations of motion corresponding to Hamiltonian (1.4) have 
the form

ṙ = ∂ H

∂ pr
= rm−k pr,

ṗr = −∂ H

∂r

= rm−k−3 p2
ϕ − 1

2
(m − k)rm−k−1

(
p2

r + p2
ϕ

r2

)
− mrm−1U (ϕ),

ϕ̇ = ∂ H

∂ pϕ
= rm−k−2 pϕ,

ṗϕ = −∂ H

∂ϕ
= −rmU ′(ϕ). (2.1)

If U ′(ϕ0) = 0 for a certain ϕ0 ∈ C, then system (2.1) has two di-
mensional invariant manifold

N =
{
(r, pr,ϕ, pϕ) ∈ C

4|ϕ = ϕ0, pϕ = 0
}

. (2.2)

Indeed, equations (2.1) restricted to N read

ṙ = rm−k pr,

ṗr = −1

2
(m − k)rm−k−1 p2

r − mrm−1U (ϕ0). (2.3)

Hence, N is foliated by phase curves parametrised by energy E

E = 1

2
rm−k p2

r + rmU (ϕ0). (2.4)

Taking into account that ṙ = rm−k pr we can rewrite equation (2.4)
in the form

ṙ2 = 2rm−k {
E − rmU (ϕ0)

}
. (2.5)

Let [R, P R , �, P�]T denote the variations of [r, pr, ϕ, pϕ]T . 
Then, the variational equations along a particular solution lying 
on N take the form

d

d t

⎡
⎢⎢⎣

R

P R

�

P�

⎤
⎥⎥⎦ = C

⎡
⎢⎢⎣

R

P R

�

P�

⎤
⎥⎥⎦ , (2.6)
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