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We study nonlinear waves on a plane-wave background in an erbium-doped fiber system, which is 
governed by the coupled nonlinear Schrödinger and the Maxwell–Bloch equations. We find that prolific 
different types of nonlinear localized and periodic waves do exist in the system, including multi-
peak soliton, periodic wave, antidark soliton, and W-shaped soliton (as well as the known bright 
soliton, breather, and rogue wave). In particular, the dynamics of these waves can be extracted from 
a unified exact solution, and the corresponding existence conditions are presented explicitly. Our results 
demonstrate the structural diversity of the nonlinear waves in this system.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nonlinear waves propagating in an erbium-doped fiber have
attracted special attention, since the resonant absorption of the 
erbium-doped two-level system is a good solution to the fiber-
optic signal attenuation problem [1]. In general, the dynamics of 
nonlinear waves in the erbium-doped fibers is described by the 
coupled nonlinear Schrödinger and the Maxwell–Bloch (NLS-MB) 
models [1–3]. Like the standard NLS model, the standard bright 
(i.e., zero background) solitons [2,3], and the localized waves on a 
plane-wave background, such as rogue waves [4,5] and breathers 
[5,6] in the NLS-MB system have been demonstrated.

However, in contrast to the scalar NLS system, the coupled 
NLS-MB system possesses some additional system parameters and 
allows for interaction between different components, which poten-
tially yields rich and significant localized-wave dynamics. Indeed, 
recent studies indicate that rich nonlinear localized structures do 
exist in the coupled NLS systems [7–15], such as rogue waves with 
different structures [7–9], coexistence of different types of local-
ized nonlinear waves [10–13], and so on [14,15]. On the other 
hand, due to the breaking of the Galilean transformation for the 
plane-wave background fields, the background frequency plays a 
key role in the types of nonlinear waves and cannot be ignored 
in the coupled NLS-MB system. In fact, it is demonstrated re-
cently that the different values of the background frequency in 
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the higher-order NLS model (where the Galilean transformation is 
broken) can induce different types of localized waves [16,17]. Mo-
tivated by these results, we shall study prolific types of nonlinear 
waves in the NLS-MB system.

In this letter, we present intriguing different types of nonlin-
ear localized and periodic waves in an erbium-doped fiber system, 
including multi-peak soliton, periodic wave, antidark soliton, and 
W-shaped soliton (as well as the known bright soliton, rogue wave, 
and breather). It is found that these waves can be extracted from a 
unified exact solution under specific parameter conditions. In par-
ticular, the multi-peak soliton could be regarded as a single pulse 
formed by a nonlinear superposition of a soliton and a periodic 
wave, where each have the same velocity.

2. NLS-MB system and different types of nonlinear waves

We consider a resonant erbium-doped fiber system governed 
by a coupled system of the NLS-MB equations [1–3]

Ez = i(
1

2
Ett + |E|2 E) + 2P ,

Pt = 2iωP + 2Eη,

ηt = −(E P∗ + P E∗), (1)

where E(z, t) is the slowly varying envelope field; P (z, t) is the 
measure of the polarization of the resonant medium, which is de-
fined by P = v1 v∗

2; η(z, t) denotes the extent of the population 
inversion, which is given by η = |v1|2 − |v2|2, v1 and v2 are the 
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wave functions of the two energy levels of the resonant atoms; 
ω is the carrier frequency, and the index ∗ denotes complex con-
jugate. In order to study abundant types of nonlinear structures in 
the NLS-MB model in contrast to the previous results [2–6], we 
first introduce the following plane-wave background solution with 
a generalized form

E1 = aeiθ , P1 = ikE1, η1 = ωk − qk/2, (2)

where θ = qt +νz, ν = a2 +2k −q2/2, a and q represent the ampli-
tude and frequency of background electric field, respectively, and 
k is a real parameter which is related to the background ampli-
tude of P component. If the background amplitudes vanish, Eq. (2)
reduces to the trivial solution, which can be used to generate stan-
dard bright soliton solutions [2,3,18,19]. Here we will pay our at-
tention to different types of nonlinear structures in electric field, 
i.e., the pulse propagation in the E component. We omit the re-
sults in the P , η components, since their types of nonlinear waves 
are similar to the ones in the E component with the same ini-
tial physical parameters. We present the first-order exact nonlin-
ear wave on the plane-wave solution (2) to reveal rich different 
types of nonlinear waves. The construction method is based on 
the Darboux transformation technique [20] applied to the Lax pair 
associated with the NLS-MB model. For the details, one can con-
struct the solution by solving the partial differential equations (Lax 
pair) starting from the initial seed solution (2). After that the gen-
eral first-order exact nonlinear wave solution on the plane-wave 
background in the E component is given

E = E1

{
1 − 8bm1[sin (γ + μ1) − i sinh (β + iμ1)]

m3 sin (γ + μ2) − im2 sinh (β − iμ3)

}
, (3)

where

β = ζ(t + V 1z), γ = σ(t + V 2z),

V 1 = υ1 + bσυ2/ζ, V 2 = υ1 − bζυ2/σ ,

υ1 = kω/(b2 + ω2) − q/2, υ2 = 1 − k/(b2 + ω2),

m1 =
√

(iζ − σ)2 + (2b + iq)2,

m2 =
√

(α1 + α2)2 − 4(2bζ + σq)2,

m3 =
√

(α1 − α2)2 + 4(2bσ − ζq)2,

α1 = 4a2 + 4b2 + q2, α2 = ζ 2 + σ 2,

ζ =
(√

χ2 + 16q2b2 + χ

)1/2

/
√

2,

σ =
(√

χ2 + 16q2b2 − χ

)1/2

/
√

2,

χ = 4b2 − 4a2 − q2, μ1 = arctan

(
2b + iq

σ − iζ

)
,

μ2 = arctan

(
α1 − α2

4bσ − 2qζ

)
, μ3 = arctan

(
α1 + α2

2iqσ − 4ibζ

)
. (4)

The above expressions depend on the background wave ampli-
tudes a, k, the background wave frequency q, the real parameter 
b(�= 0), and the frequency ω. Once the structural parameter ω is 
fixed, we are left with four independent parameters a, k, q, b.

Remarkably, we find that the unified solution (3) describes 
abundant different types of nonlinear waves through different 
choices of the system parameters. For the details, we present a 
table (Table 1) for the types of nonlinear waves and the corre-
sponding chosen parameter conditions. To our knowledge, some 
new types of nonlinear waves such as multi-peak soliton, periodic 

Table 1
Types of nonlinear waves in NLS-MB system.

Nonlinear wave type Existence condition

Breather b2 + ω2 �= k, a �= b
Rogue wave b2 + ω2 �= k, a = b
Multi-peak soliton b2 + ω2 = k, q �= 0
Periodic wave b2 + ω2 = k, q = 0, a2 > b2

Antidark soliton b2 + ω2 = k, q = 0, a2 < b2

W-shaped soliton b2 + ω2 = k, q = 0, a = b

Fig. 1. (a) Intensity distributions (I = |E|2) of multi-peak solitons on a plane-wave 
background, (b) is the profile of (a) at z = 0. The parameters are a = 1, b = 0.5, 
ω = 2, and q = 10. (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)

wave, antidark soliton, and W-shaped soliton, are found in the sys-
tem for the first time.

To reveal the properties of these new types of nonlinear struc-
tures in the system, let us pay our attention to the explicit function 
expression of the solution (3). It depends on the hyperbolic func-
tions (sinh β) and the trigonometric functions (sinγ ), where β and 
γ are real functions of z and t , and V 1, V 2 are the corresponding 
velocities. In this case, the hyperbolic functions and trigonometric 
functions describe the localization and the periodicity of the trans-
verse distribution t of the nonlinear waves, respectively. Hence this 
nonlinear structure could be regarded as a single pulse formed by 
a nonlinear superposition of a soliton and a periodic wave with 
velocities V 1, V 2. One should note that the nonlinear wave solu-
tion (3) is different from the two-soliton complex solutions [24,25]
which mix hyperbolic functions of two different (spatial) argu-
ments. Interestingly, we find that the nonlinear waves described 
by the unified solution (3) exhibit structural diversity depending 
on the values of velocity difference, i.e., V 1 − V 2.

In the case of nonzero velocity difference, i.e., V 1 �= V 2, which 
implies υ2 �= 0 (thus k �= b2 + ω2), the expression (3) describes 
localized waves with breathing behavior on a plane-wave back-
ground (i.e., breathers and rogue waves). Here breathers are the 
localized breathing waves with a periodic profile in a certain di-
rection; rogue waves are rare, short-lived, and localized in both 
space and time, which are some special cases of breathers. More 
specifically, if q = 0, υ2 �= 0, we obtain the Akhmediev breathers 
[21] with a > |b|, the Kuznetsov–Ma breathers [22] with a < |b|, 
and the Peregrine rogue waves [23] with a = b. We note that the 
solution (3) includes, as a special case V 1 �= V 2, the breather and 
rogue wave solutions in the NLS-MB system that was reported in 
[4–6].

Instead, if V 1 = V 2, q �= 0 (thus ζ �= 0, σ �= 0), the pulse de-
scribed by solution (3) is formed by a nonlinear superposition of 
a soliton and a periodic wave, where each has the same veloc-
ity υ1. This result is well depicted in Fig. 1. As expected, in this 
case, the expression (3) describes a new multi-peak soliton-like 
pulse propagating along z direction. Namely, the feature of this 
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