
Physics Letters A 375 (2011) 3469–3473

Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Onsite hybridization between Ce 4 f and 5d states as the indicator of the
transition from Kondo insulator to metallic state in CeRhSb

Jerzy Goraus ∗, Andrzej Ślebarski
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We discuss and determine the conditions under which a Kondo-insulator phase is stable. We show
for CeRhSb that the dependence of the onsite hybridization energy Vdf between the Ce 5d and Ce
4 f states on the number of valence electrons or the unit cell volume is decisive for the hybridization
Kondo gap formation. We also propose the method for determining the energy Vdf from the ab initio
calculations. This approach supplies an accurate Kondo-insulator–metal transition in agreement with the
recent experimental data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Ce-based Kondo-lattice intermetallics exhibit a variety of un-
usual ground states, including complex magnetic structures, heavy
fermion (HF) states both normal and superconducting, and para-
magnetic insulating Kondo lattices (KI). The magnetic/nonmagnetic
behavior of a dense Kondo system is largely controlled by the
strength of the on-site hybridization V cf among conduction and
f -electron states. The strength of the c– f exchange interaction
can be tuned by either the composition or pressure and results
in a competition between the intrasite Kondo and the intersite
Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions. The first such
model of the HF metals was proposed by Doniach [1], who ob-
tained a simple phase diagram which displays the magnetic or-
dering temperature TRKKY as a function of Jc f N(εF ), where the
exchange-coupling Jc f ∼ V 2

cf and N(εF ) is the density of states
(DOS) at the Fermi level. The Jc f can be varied by chemical sub-
stitution. A good deal of theoretical work (e.g., Ref. [2]) on Kondo
three-dimensional lattices has been carried out since Doniach’s
work. The essence of physics in the low-temperature region is
grasped by periodic Anderson model. It has been shown [2], that
the stability of the magnetic ground state in the Kondo-lattice limit
is first of all strongly dependent on V cf and the number of valence
electrons ne . The theoretical phase diagram on the V cf –ne plane
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has been shown to provide a qualitative account for experimen-
tal results on the series of Ce-ternary intermetallics [3]. Within
the periodic Anderson model the paramagnetic Kondo-insulator
state was obtained [2] for CeRhSb and CeNiSn in the ne = 2 limit
and for large hybridization energy V cf .1 Our systematic study has
also shown that the gap in the doped CeRhSb or CeNiSn Kondo
insulators is very sensitive to the degree of hybridization. The
transition from KI to a metallic region observed as a function of
variable valence electron number induced by substitution of Rh
for Ni (Ref. [4]) in CeNiSn, Pd for Rh in CeRhSb [5], or La for
Ce in the both KIs [6] and of accompanying effect of the signif-
icant change of hybridization parameter2 Δ = π V 2

cf N(εF ) at the
critical concentration ∼ 6–10% of the doping element give evi-
dence for the universal behavior in Kondo insulators. Recently [8,
9] we have discovered a quantum critical point with x = xc ≈ 0.12,
when the system CeRhSb1−xSnx undergoes from the KI state to

1 In Ref. [2], the Kondo insulating state is obtained for ne = 2 and the hybridiza-
tion energy V cf > 0.35 W, where V cf is in the band width units. For the Kondo-
insulator limit we roughly estimated the value of V cf > 0.35 eV, considering the
band width W ∼ 1–2 eV and very low density of the residual states located in the

gap (pseudogap). Note, V cf =
√

Δ
π N(εF )

is mostly determined by the value of DOSs

at the Fermi level. In case of KI state, N(εF ) is very small either from ab initio cal-
culations or from XPS valence band spectra.

2 The quantitative analysis of the Ce-3d XPS spectra can be done on the Gun-
narsson and Schönhammer (GS) model calculations [7]. The hybridization parameter
Δ = π V 2

cf N(εF ). According to the GS model, the Δ value can be estimated from the

ratio I( f 2)/[I( f 1)+ I( f 2)], where I( f n) is the intensity of the f n peak in the Ce-3d
XPS spectra.

0375-9601/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2011.08.003

http://dx.doi.org/10.1016/j.physleta.2011.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:jerzy.goraus@us.edu.pl
mailto:andrzej.slebarski@us.edu.pl
http://dx.doi.org/10.1016/j.physleta.2011.08.003
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the metallic (non-Fermi liquid, NFL) state.3 In that system the car-
rier concentration diminishes upon the Sn substitution for Sb, also
the rapid decrease of energy Δ has been experimentally obtained
at this critical concentration, which separates the KI region with
Δ ≈ 150 meV from the metallic one with Δ ≈ 80 meV.

Here, we present theoretical argumentation for the Kondo-
insulator–metal transition in the series of CeRhSb1−xSnx com-
pounds, basing on full potential local orbital (FPLO) calculations
within virtual crystal approximation (VCA). With the substitution
of Sn for Sb we diminish by one the number of valence elec-
trons, so we can study the Kondo insulating state as a function
of carrier number and its subsequent metalization within VCA. We
analyzed theoretically the onsite hybridization energy Vdf between
the Ce-5d and Ce-4 f states as obtained from the band structure
calculations, and found a drastic change of Vdf at the concentra-
tion x = 0.12, which well agrees with xc obtained experimentally
for CeRhSb1−xSnx. For comparison we also present the Vdf calcu-
lations for the series of hypothetical metallic CeRhSn1−xInx com-
pounds, where the anomalous Vdf (x) behavior is absent in our
calculations. We also calculated the pressure dependence of the
matrix element Vdf in CeRhSb and we found its anomalous change
at critical pressure that separates the KI region from the metallic
one.

Our recent studies of different Ce-based intermetallic com-
pounds on the base of theoretical phase diagram [2] V cf –ne al-
lowed us to interpret magnetic ground state of the Kondo lattice
system, assuming that V cf and ne are independent variables. Inside
the general two band model considerations these two variables can
be independent, however, in the real intermetallic compound the
change of the number of carriers induces the change of the hy-
bridization. Within one-electron approach used in the DFT theory
this can be understood on the following basis: the change of the
number of carriers induces the change in the local atomic poten-
tial which influences the shape of the local orbitals obtained in
the self-consistent procedure. Therefore the analysis of the Kondo-
insulator–metal transition in CeRhSb1−xSnx (to see the effect of the
decreasing number of conduction electrons on the gap formation
in CeRhSb) on the base of the model in Ref. [2] is rather qualita-
tive. In this Letter we study the onsite hybridization between Ce-5d
and Ce-4 f states Vdf , which in contrast to V cf doesn’t depict the
interaction of f state with all Bloch waves; we are limiting our
investigations only to the 5d states on the same atom. Note, that
in this approach V cf and Vdf should not be directly compared.
It seems to be clear, that the hybridization Vdf points to critical
behavior in CeRhSb1−xSnx series and can be crucial in explaining
quantum critical phenomena at x ≈ 0.12.

2. Calculation details

The electronic structure of the CeRhSb1−xSnx series was stud-
ied using the FPLO method (FPLO5-00-20 computer code [10])
accomplished within VCA approach. The calculations were per-
formed for x < 0.3 with the step �x = 0.03 for the lattice pa-
rameters obtained experimentally. The lattice parameters of the
compounds CeRhSb1−xSnx are practically independent of x because
of the similar atomic radii of Sb and Sn atoms. The exchange cor-

3 Our previous alloying studies [9] showed that the CeRhSb1−xSnx series contains
the single-phase with ε-TiNiSi-type structure only for 0 � x � 0.2 (for 0.78 � x � 1
the Fe2P-structure exists, whereas for 0.2 � x � 0.78, the samples are not sin-
gle phase). On the Sb-rich side [8] (0 � x � 0.2) the Kondo semiconducting state
evolves (as a function of the number of carriers) into non-Fermi liquid metallic state
via a quantum critical point located at x = 0.12. We noted, however, that the resid-
ual density of states at the Fermi level continuously increase with doping due to
an atomic disorder. On the Sn-rich side (metallic state for 0.78 � x � 1) we ob-
served [9] both the singular quantum fluctuations associated with the 4 f electrons
and the 4d-spin fluctuations.

relation potential V xc was used in the form proposed by Perdew
and Wang [11]. Calculations were carried out in scalar relativistic,
spin resolved way; in all cases, however, we obtained nonmag-
netic ground state (what is in agreement with experimental data).
We considered (6s, 6p, 5d) as valence states for Ce and (5s, 5p,
4d) for Rh, Sb, Sn. Following states were considered as semicore
states: (4 f , 5s, 5p) states for Ce and (4s, 4p) states for Rh, Sb, Sn.
Polarization states 5d were included in case of Sb, Sn, Rh. The cal-
culations were carried out for 343 k-points in irreducible Brillouin
zone. Coulomb correlations were included within LSDA+ U [12,13]
approach, with U = 6 eV (which is a typical value for strongly cor-
related Ce systems).

FPLO5 code allows to output radial part of the local orbitals, as
well as the onsite atomic potential including also the non-spherical
part in a basis of spherical harmonics. Moreover, it allows the eval-
uation of the total potential at the arbitrary point in a unit cell
(which includes also the influence of neighboring atoms). In this
Letter we have used two approaches: one which used the local
potential (LP) which is the sum of Ewald, Hartree and V xc at an
atomic site (it neglects the influence of the neighboring atoms),
and the second which used total potential (TP) at an atomic site
(the sum of all contributions to potential at a given point in real
space). The total potential was evaluated on the uniform spherical
grid with the center at one of the equivalent 4c Wyckoff positions
occupied by the Ce atom. The radial grid included 2000 points
(up to 10 atomic units). The both, azimuthal grid and zenith an-
gle grid contained 60 points. This total potential was evaluated in
real space and then projected onto the Ylm basis for l < 6 so that
Vlm(r) was obtained.

All the presented results were carefully checked for conver-
gence, with total energy convergence better than 10−6 Hartree.
The onsite hybridization between Ce 5d and 4 f states is defined
in Eq. (1).

V hyb(n1, l1,n2, l2)

=
∑
l,m

−l1�m1�l1−l2�m2�l2

∫
ψ̄n1l1m1(r, θ,φ)Vlm(r)Ylm(θ,φ)

× ψn2l2m2(r, θ,φ)r2 sin θ dθ dφ dr (1)

In a spherical atomic potential approximation the onsite hy-
bridization between the states with different l or m quantum num-
bers is impossible due to the orthogonality condition for the spher-
ical harmonics

∫
Y m

l Ȳ m′
l′ sin θ dθ dφ = δll′δmm′ . This is, however, not

the case of a non-spherical potential, which can be expressed in a
basis of spherical harmonics. Namely, for a given crystal symmetry
only some l and m numbers are allowed. Then, the integral equa-
tion (1) can be separated on spherical part (Eq. (2)) and angular
one, which is effectively present in Φm,l,l1,l2 shown in the expres-
sion for Vl1,l2 (r) (Eq. (3)).

Vhyb(n1, l1,n2, l2) =
∫

Rn1l1(r)Vl1,l2(r)Rn2l2 r2 dr (2)

Vl1,l2(r) =
∑
l,m

Φm,l,l1,l2 Vlm(r) (3)

The hybridization between states of different l and m is possible
according to Eq. (4).

Φm,l,l1,l2 =
∑

−l1�m1�l1−l2�m2�l2

(−1)m1

∫
Y −m1

l1
Y m

l Y m2
l2

sin θ dθ dφ (4)

The integral in Eq. (4) can be calculated from Wigner 3j sym-
bols as is shown in Eq. (5).
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