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The dynamics of a bouncing ball model under the influence of dissipation is investigated by using 
a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to 
different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary 
the control parameters. Crises between the attractors and their boundaries are observed. We found that 
the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable 
manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the 
sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number 
of attractors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Modeling of dynamical systems is one of the most embracing 
areas of interest among physicists and mathematicians in general 
[1]. Very popular among these models are low-dimensional sys-
tems [2,3], whose complex dynamics leading to a rich variety of 
nonlinear phenomena [3–6], including bifurcations in non-smooth 
dynamical systems [7].

Here we study the problem of a bouncing ball model, where 
a free particle is suffering collisions with a vibrating wall under 
the presence of a constant gravitational field. Holmes [8,9] and 
Pustylnikov [10,11] were among the first to study the bouncing 
ball dynamics. This model has been used in many physical and 
engineering applications. For instance, it describes a similar accel-
eration phenomenon that cosmic rays experience to acquire high 
energies, known as Fermi acceleration [12] (considered as the first 
attempt of prototype for the bouncing ball dynamics); the dynamic 
stability in human performance, where a human tries to stabilize a 
ball on a vibrating tennis racket [13]; and the subharmonic vibra-
tion waves in a nanometer-sized mechanical contact system [14]. 
One can also find studies in granular materials [15–18], experi-
mental devices concerning normal coefficient of restitution [19,
20], mechanical vibrations [21–23], anomalous transport and diffu-
sion [24,25], thermodynamics [26], chaos control [27–29], besides 
the well known connection with the standard mapping [2], which 
leads to other several applications.
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Although the bouncing ball problem has been studied for many 
years [8–11,30,31], concerning different aspects and applications, 
the implications of the nonlinear perturbation requires an exten-
sive and complex analysis where some chaotic properties are not 
yet fully understood. In this paper we consider a high dissipative 
bouncing ball model where a coefficient of restitution plays the 
role of dissipation, and the perturbation parameter is physically in-
terpreted as a ratio between the moving plate acceleration and the 
gravitational field. For some combinations of parameters, plenty of 
attractors can coexist [32–34]. We found that these attractors in 
the phase space are intertwined, and varying the value of the con-
trol parameter of perturbation, we characterize a boundary crisis 
[6,35–37] between the stable and unstable manifold of the same 
saddle point. Such a crisis leads to successive destruction of these 
intertwined attractors and is a mechanism that allows the lowest 
energy attractor, which is related to the vibrating wall, to continue 
to exist, giving it the status of a robust attractor. In addition, we 
describe a physical impact crisis, between the real vibrating plate 
and the border of an attractor. This crisis, as yet unclassified, re-
duces the number of attractors dramatically at a single parameter 
value.

The organization of the paper is given as follows. In Section 2
we describe the dynamical system under study and its chaotic 
properties. Section 3.1 is devoted to the numerical analysis of the 
average velocity, in Section 3.2 we study the basin of attraction of 
the fixed points and set up the impact physical crisis, and in Sec-
tion 3.3 we discuss the relation between the manifolds boundary 
crisis and the attractors; finally in Section 4 we draw some final 
remarks and conclusions.
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2. The model, the mapping and chaotic properties

In this section we describe the model under study, the bounc-
ing model, which consists of a particle, under the influence of a 
constant gravitational field, that suffers inelastic collisions with a 
heavy oscillating wall. Dissipation is introduced via a restitution 
coefficient γ ∈ [0, 1], where γ = 1 recovers the conservative case, 
where Fermi Acceleration (FA) is inherent [25,38]. The introduction 
of dissipation can be considered as a suppression mechanism for 
this unlimited energy growth [39,40]. The system is oriented along 
the vertical axis, where the upward direction is said to be positive, 
the wall equilibrium position is set at y = 0, and the dynamics is 
basically described by a non-linear mapping for the variables ve-
locity of the particle v and time t immediately after a nth collision 
of the particle with the vibrating wall.

There are two distinct versions of the dynamics description: (i) 
complete one, which consists in considering the complete move-
ment of the time-dependent wall, and (ii) simplified, where the 
wall is assumed to be fixed, but exchanges momentum and en-
ergy with the particle upon collision. Both approaches produce a 
very similar dynamic considering conservative [25] and dissipa-
tive cases [26,39–41]. In the complete version, the vibrating wall 
obeys the equation yw(tn) = ε cos wtn , where ε and w are re-
spectively, the amplitude and the frequency of oscillation of the 
vibrating wall. In the simplified version, the vibrating wall is said 
to be fixed at y = 0, but when the particle collides with it, they ex-
change momentum and energy as if the wall were vibrating. Thus, 
the simplified approach keeps the nonlinearity of the model and 
significantly speeds up the numerical simulations, as well allows 
easier analytical calculations. In this paper and from this point be-
yond, we only deal with the complete version of the mapping.

Considering the flight time, which is the time that the particle 
spends to go up, stop with zero velocity, starts falling and collides 
again with the vibrating wall, we define some dimensionless and 
more convenient variables as: Vn = vn w/g , ε = εw2/g , where Vn

is the “new dimensionless velocity”, g is the gravitational field and 
ε can be understood as a ratio between accelerations of the vi-
brating wall and the gravitational field. For instance, one can set 
some real values for the dimensional variables, as g = 10 m/s2, 
ε = 0.001 m, w = 2π f , where f = 100 Hz, and obtain the dimen-
sionless variable ε ≈ 0.1591. Some real devices concerning impact 
experiments with granular material can be found in Refs. [19,20]. 
Also, measuring the time in terms of the number of oscillations of 
the vibrating wall φn = wtn , we obtain the mapping

T :
{

Vn+1 = −γ (V ∗
n − φc) − (1 + γ )ε sin(φn+1),

φn+1 = [φn + �Tn] mod (2π),
(1)

where the expressions for V ∗
n and �Tn depend on the kind of the 

considered collision. For the case of multiple collisions inside the 
collision zone [−ε, +ε], the expressions are V ∗

n = Vn and �Tn =
φc where φc is obtained from the condition that matches the same 
position for the particle and the vibrating wall, expressed as

G(φc) = ε cos(φn + φc) − ε cos(φn) − Vnφc + 1

2
φ2

c , (2)

where this transcendental equation must be solved numerically for 
G(φc) = 0, with φc ∈ (0, 2π ].

If the particle leaves the collision zone case after a colli-
sion, goes up, reach null velocity, and falls for an another col-
lision, we have indirect collisions and the expressions are V ∗

n =
−

√
V 2

n + 2ε(cos(φn) − 1) and �Tn = φu + φd + φc with φu = Vn

denoting the time spent by the particle in the upward direction 
up to reaching the null velocity, φd =

√
V 2

n + 2ε(cos(φn) − 1) cor-
responds to the time that the particle spends from the place where 
it had zero velocity up to the entrance of the collision zone at ε . 

Fig. 1. Comparison between phase space for conservative and dissipative dynamics. 
In (a) ε = 0.6 and γ = 1.0, and in (b) ε = 0.6 and γ = 0.9. In (b) the thick black 
regions are the sinks and the bottom attractor. Also, all the spread dots are the 
transient.

Finally the term φc has to be obtained numerically from the equa-
tion

F (φc) = ε cos(φn + φu + φd + φc) − ε − V ∗
n φc + 1

2
φ2

c , (3)

where F (φc) represents a transcendental equation that must be 
solved numerically in order to find the exact “time” of collision, as 
F (φc) = 0, with φc ∈ [0, 2π ].

The obtainment of the numerical root φc is done considering 
at first G(φc) = 0. If we did not find any root for G(φc), we start 
to evaluate F (φc) = 0. The root seeking process is made by solving 
the transcendental equations via bisection method, with a preci-
sion of 10−14.

Taking the determinant of the Jacobian matrix of both kinds of 
collisions (see Ref. [40] for details), and after a straightforward al-
gebra, it is easy to show that the mapping (1) shrinks the phase 
space measure since the determinant of the Jacobian matrix is 
given by

Det J = γ 2
[

Vn + ε sin(φn)

Vn+1 + ε sin(φn+1)

]
. (4)

Here, if γ = 1 we recover the non-dissipative version of the map-
ping, in fact, as velocity and phase are not canonical pairs in 
the complete version, the determinant of J is not the unity, but 
rather it leads to the following measure to be preserved, dμ =
(V +ε sin φ)dV dφ. Indeed, the extended phase space for the whole 
version of the model considers four variables namely: (1) yw de-
noting the position of the vibrating wall; (2) V p corresponding to 
the velocity of the particle; (3) E p which is the mechanical en-
ergy (kinetic+gravitational) of the particle and (4) the time t . The 
canonical pairs however are: position and velocity (yw , V p) and 
energy and time (E p, t).

Another useful property for the dynamics evolution, as func-
tion of the control parameters, is the analysis of the fixed points 
and their stability. For the bouncing ball model the period-1 fixed 
points can be obtained by doing Vn+1 = Vn = V ∗ and φn+1 = φn =
φ∗ + 2mπ in Eq. (1). For both kinds of collisions, successive and 
indirect, the fixed points are

V ∗ = mπ ;m = 1,2, . . . , φ∗ = arcsin

(
V ∗(γ − 1)

(1 + γ )ε

)
. (5)
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