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Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters
of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci
and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux.
We work out an analytical scheme to unravel the localized single particle states pinned at various atomic
sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of

localization and the location of the flat band states in energy space. In addition to this we show that an
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appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in
a band, with a periodic flip in its sign.
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Geometrically frustrated lattices (GFLs) supporting flat, disper-
sionless bands in their energy spectrum with macroscopically de-
generate eigenstates have drawn great interest in recent times
[1-8]. Initial interest in antiferromagnetic Heisenberg model on
frustrated lattices [9-14] has evolved into extensive studies of the
gapped flat band states to gapless chiral modes in graphenes [15],
in optical lattices of ultracold atoms [16], waveguide arrays [17],
or in microcavities having exciton-polaritons [18]. The quenched
kinetic energy of an electron in a flat band state (FBS) leads to the
possibility of achieving strongly correlated electronic states, topo-
logically ordered phases, such as the lattice versions of fractional
quantum Hall states [19]. Recently, the controlled growth of arti-
ficial lattices with complications such as in the kagome class has
added excitement to such studies [20,21].

Spinless fermions are easily trapped in flat bands [6]. The non-
dispersive character of the energy (E)-wave vector (k) curve im-
plies an infinite effective mass of the electron, leading to practically
its immobility in the lattice. Such states are therefore strictly lo-
calized either on special sets of vertices, or in a finite cluster of
atomic sites spanning finite areas of the underlying lattice. Re-
cently it has been shown that an infinity of such cluster-localized
single particle states can be exactly constructed even in a class of
deterministic fractals [22]. Apart from its interest in direct relation
to the study of GFLs, this work provides an example where eigen-
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values corresponding to localized eigenstates in an infinite fractal
geometry can be exactly evaluated, a task that is a non-trivial one
if one remembers that these fractal systems are free from transla-
tional invariance of any kind.

In this communication we unravel and analyze groups of flat,
dispersionless energy bands in some tailor made GFLs. The lat-
tices display an interesting competition between long range trans-
lational order along the horizontal (x—) axis and an aperiodic
growth in the transverse directions. In each case, the skeleton is an
infinite array of diamond shaped networks (Fig. 1(a)) where hier-
archical structures, grown deterministically, are embedded in each
arm of the diamond. A uniform magnetic flux threads each ele-
mentary plaquette, as will be illustrated in appropriate cases. The
motivation behind the present study is two-fold.

First, exploiting the self-similar growth of the hierarchical struc-
tures we can implement a real space renormalization group (RSRG)
scheme to evaluate the pinned, flat band states (FBS) exactly. In all
the cases we discuss in this paper the flat band states merge with
the localized eigenstates of the infinite hierarchical geometry as
higher and higher generations of them are embedded in the arms
of the underlying diamonds. Thus, once again, the problem of an
exact evaluation of localized states in a fractal geometry is, at least
partially, solved.

Second, and a more important aspect of the problem is to
look for a possible coexistence of a multitude of dispersive and
non-dispersive energy bands in a periodic array of the elemen-
tary building blocks. As an arm of the elementary diamond hosts a
quasi-periodic or a deterministic fractal of sequentially increasing
generation, the flat, dispersive bands are likely get densely packed
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Fig. 1. (Color online.) (a) A typical realization of an elementary array of diamond
shaped quadruplets exhibiting a single flat, dispersionless band at E = 0, (b) its
renormalization into an effective two-arm ladder network with energy dependent
potential and nearest and next nearest neighbor interactions and (c) the effective
one-dimensional chain obtained after decimating out the top (yellow colored) ver-
tices.

in an environment of dispersive ones. The density of packing may
even lead, for a large enough generation of the hierarchical struc-
ture, to a re-entrant dispersive to non-dispersive crossover in the be-
havior of the electrons. A recent inspiring work by Danieli et al. [8]
has shown that a quasiperiodically modulated flat band geometry
may even allow for a precise engineering of the mobility edges.

In addition to this, we anticipate that, a variation in the
strength of the magnetic field can lead to a tuning of the cur-
vature of the energy dispersion curves. We can thus achieve a
comprehensive control over the group velocity and effective mass
of the electron with the help of an external field. Knowing that,
a deterministic quasiperiodic or fractal geometry normally offers a
completely fragmented, Cantor set-like energy spectrum, this latter
study may allow us to control the effective mass of the electron
using an external agent such as the magnetic field over arbitrarily
small scales of the energy or, equivalently, the wave vector.

We present here a simple analytical method to detect the
sharply localized eigenstates that are pinned on certain atoms or
atomic clusters in a periodic array of diamonds. The non-dispersive
character of such states is explicitly worked out. The method is
then extended to unravel the entire set of such FBS when each arm
of an elementary diamond hosts a quasiperiodic lattice grown ac-
cording to a deterministic Fibonacci sequence [23], and Berker [24]
geometry. Such aperiodic structures with sequentially increasing
hierarchy are embedded in the diamond’s arm. We indeed find
that, as one gradually increases the degree of aperiodicity in the
arms, the pinned FBS in such periodic approximants turn out to be
the localized eigenstates of the systems in their respective thermo-
dynamic limits.

In addition, we observe that, with a deterministic aperiodic ge-
ometry of sufficiently large generation embedded in the arms of
a diamond array, the interplay of periodicity along the x-axis and
the aperiodic order in the transverse directions, produces a highly
complex dispersion pattern. The flat, dispersionless bands densely
fill the gaps between the dispersive ones, giving rise to the possi-
bility of a quasi-continuous crossover between them as the aperi-
odic components grow in hierarchy.

The magnetic field piercing the elementary plaquettes in each
case is shown to control the group velocity of the electrons, mak-
ing them more and more immobile as the flux ® — ®y/2, where
®g = hc/e is the fundamental flux quantum. This is an exemplary
case of extreme localization induced by the magnetic flux as dis-
cussed by Vidal and co-workers [11-13]. The magnetic field is
shown to flip the sign of the effective mass multiple times within
a single Brillouin zone - a remarkable contrast to the ordinary pe-

riodic linear lattice. The electron-lattice interaction thus can be
fine-tuned from outside by selective choice of the flux threading
a plaquette.

In what follows, we present our results. In Section 1 we work
out the basic method of analyzing the FBS in an elementary dia-
mond array, and compare the result with the existing ones. Sec-
tion 2 deals with the Fibonacci-diamond chain, and in Section 3
we elaborately discuss the fractal-diamond networks. In Section 4
we explicitly discuss the generic diamond loop-array where a mag-
netic field controls the effective mass of the electron making its
sign periodically flipped. In Section 5 we draw our conclusions.

1. The Hamiltonian and the pinned eigenstates

We refer to Fig. 1. Spinless, non-interacting electrons are de-
scribed using a tight-binding Hamiltonian in the Wannier basis,
viz.

H:Zeicjc,~+2tij [ch—i—h.c.] (1)
i (ij)

where, €; is the on-site potential and can assume values equal to
€3 or €4 depending on the site at the vertex having a coordination
number z = 3 (yellow circles), or in the bulk, having a coordina-
tion number z =4 (black circles). Throughout this paper we shall
choose €3 = €4 just to see the effect of the topology of the lat-
tice alone. However, the symbols will be in use to facilitate any
discussion. The nearest neighbor hopping integral t;; =t along the
arm of the diamond, and t;; =t along the diagonal connecting the
vertices with coordination number two. The Schrédinger equation,
written equivalently in the form of the difference equation,

(E—enyi =Y _tij¥; (2)
J

allows us to decimate out the “black” vertices of the diamond
network to map the original array on to an effective two-arm lad-
der (Fig. 1(b)) (with arms marked A and B) comprising identical
(green colored) atomic sites with renormalized on-site potential
& = €3 +2t%/(E — €4). The renormalized hopping integral along the
arm of the ladder now becomes t = t%/(E — €4), and the inter-arm
hopping becomes y =t + 2t2/(E — €4). The decimation generates
a second neighbor hopping (brown line) inside a unit plaquette of
the ladder and along the diagonal, viz., &£ =t2/(E — €3).

The difference equation for the ladder network may now be
cast using 2 x 2 matrices, in the form [25]:

(52)-(E)] ()
(£ )+ (E9) ) 2

It is easy to check that both the ‘potential matrix’ (comprising €
and y) and the ‘hopping matrix’ (with 7 and &) commute, and
hence can be simultaneously diagonalized by a similarity trans-
form. Eq. (3) can then be easily decoupled, in a new basis defined
by ¢, = M~ 1y, The matrix M diagonalizes both the ‘potential
and the ‘hopping’ matrices. The decoupled set of equations are free
from any ‘cross terms’ and reads, in terms of the original on-site
potentials and hopping integrals, as:

E—|es+t+ 4 dna= 2 (& +¢ )
3 E—64 11,A—E_64 n+1,A n—1,A

(E—€3+D¢np=0 (4)

The first equation represents a periodic array of identical atomic
sites with renormalized on-site potential €3 + f + 4t%/(E — €4),
and nearest neighbor hopping integral 2t%/(E — €4). The second
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