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Lower bound for the shape complexity measure of López-Ruiz–Mancini–Calbet (LMC), CLMC is studied.
Analytical relations for simple examples of the harmonic oscillator, the hydrogen atom and two-electron
‘entangled artificial’ atom proposed by Moshinsky are derived. Several numerical examples of the
spherically confined model systems are presented as the test cases. For the homogeneous potential,
CLMC is found to be independent of the parameters in the potential which is not the case for the non-
homogeneous potentials.
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1. Introduction

There are several statistical measures of complexity [1,2].
A given measure becomes significant when a rigorous bound on it
is known to exist. In this Letter, we focus on the LMC (López-Ruiz–
Mancini–Calbet) complexity [1], CLMC, with the aim to consider
the lower bound problem and the value of LMC complexity for
the ground states of different quantum systems. The lower bound
is tested by presenting (a) the analytical expressions for some
simple systems: the harmonic oscillator, the hydrogen atom and
two-electron atom proposed by Moshinsky [3] and (b) the numer-
ical calculations on the spherically confined model of one and two
electron systems [4–7].

Consider a D-dimensional distribution function f (r), with f (r)
nonnegative and

∫
f (r)dr = 1; r stands for r1, . . . , rD . The Shannon

entropy [8] and the Shannon entropy power are defined as

S f = −
∫

f (r) ln f (r)dr, (1)

H f = eS f , (2)

respectively. The so-called disequilibrium D has the form

D f =
∫

f 2(r)dr. (3)

The definition of the continuous version of the LMC complexity
measure is [9]

CLMC = H f D f (4)
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It is known [9] that the complexity corresponding to probability
distributions given by rectangular, triangular, Gaussian and expo-
nential functions in one-dimensional position space is given by 1,
(2/3)(e1/2), (e1/2)/2, and e/2, respectively. The rectangular proba-
bility distribution, by definition, corresponds to the minimum sta-
tistical complexity. We shall now derive the lower bound for CLMC
corresponding to a given one-electron density.

2. Inequality for the LMC complexity

To derive a lower bound for the LMC complexity we cite Theo-
rem 2 of the paper of Yáñez et al. [10]. The position-space entropy
S̃� of an N-electron system in a physical state characterized by the
(normalized to N) one-electron density �(r) fulfills the inequality

S̃� + 〈
ln g(r)

〉
� N ln

(∫
g(r)dr

N

)
, (5)

where g(r) is an arbitrary positive function. From the relationship
between the Shannon entropies coming from densities normalized
to 1 and N [10]:

S f = S̃�

N
+ ln N (6)

and taking g = f 2, we obtain the inequality

S f + ln

(∫
f 2(r)dr

)
� 0. (7)

From the definition of the LMC complexity (4) we obtain the upper
bound

ln CLMC � 0 (8)
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or

CLMC � 1. (9)

As was rigorously proven in Ref. [9] the lower bound saturates in
the rectangular probability distribution. In the next section analyt-
ical expressions are presented for some simple systems, such as
the harmonic oscillator, the hydrogen atom and two-electron atom
proposed by Moshinsky.

3. Analytical examples

Consider first the one-dimensional box problem i.e. the infinite
square well in one-dimension: V (x) = 0, if |x| < a and V (x) = ∞,
if |x| > a. Even solutions are

ψe,n = A cos

(
nπx

2a

)
, (10)

if |x| < a. Odd solutions are

ψo,n = B sin

(
nπx

2a

)
, (11)

if |x| < a. n = 1,2, . . . , A = B = 1/a1/2 is the normalization con-
stant. The disequilibrium takes the form:

D = 3

4a
(12)

for all eigenfunctions. The Shannon entropy can be written as

Se = ln a − 1 −
1∫

−1

ln

(
cos

(
nπu

2

)
du

)
, (13)

for the even solutions and

So = ln a − 1 −
1∫

−1

ln

(
sin

(
nπu

2

)
du

)
, (14)

for the odd solutions. Eqs. (12), (13) and (14) lead to the expres-
sion

ln CLMC = S + ln D = ln

(
3

4

)
− 1 −

1∫
−1

ln

(
cos

(
nπu

2

)
du

)
(15)

and

ln CLMC = S + ln D = ln

(
3

4

)
− 1 −

1∫
−1

ln

(
sin

(
nπu

2

)
du

)
(16)

for the even and odd cases, respectively. So the complexity for a
particle in a one-dimensional box contains, except the quantum
number n, no parameter not only in the ground- but excited states,
as well. This result is closely related to the finding of López-Ruiz
and Sañudo [11], that is, the complexity is constant for the whole
energy spectrum of the d-dimensional quantum infinite square
well.

It is possible to extend this result for the particle in a spherical
box, PIASB represented by the radial Schrödinger equation

d2 Rnl

dr2
+ 2

r

dRnl

dr
+

[
2E − l(l + 1)

r2

]
Rnl = 0. (17)

The radial wave function Rnl(r) is given by

Rnl = N jl(r
√

2E ), (18)

where jl is the Bessel function of the first kind of order l and N
denotes the normalization constant. With the Dirichlet boundary
condition imposed according to Rnl(rc) = 0, one obtains through
the condition jl(rc

√
2E ) = 0 or (rc

√
2E ) = ul,k , the energy levels

given by Ek,l = u2
l,k

2r2
c

, where uk,l denotes the k(th) zero of jl . For the

ground state, one obtains for the disequilibrium

D = Si(2π) − Si(4π)
2

(rc)3
= 0.6720709

(rc)3
. (19)

The Shannon entropy can be written as

Sr = ln
(
8πr3

c

) − 3 + Si(2π)

π
. (20)

From Eqs. (19) and (20) we obtain the relation

CLMC = 1.3207394, (21)

which is constant with respect to the radius of confinement rc .
A similar analysis in the momentum space using the Fourier trans-
form of the position space wave function in the case of PIASB leads
to CLMC = 1.517215.

As our second example, we consider free linear harmonic oscil-
lator with potential V = 1/2kx2. Then the ground-state density has
the form

� = k1/4

π1/2
exp

(−k1/2x2). (22)

We can immediately obtain the Shannon entropy:

S = − ln

(
k1/4

π1/2

)
+ 1

2
(23)

and the disequilibrium:

D = k1/4

(2π)1/2
. (24)

From Eqs. (23) and (24) we are led to the relation

ln CLMC = S + ln D = 1

2
(1 − ln 2). (25)

Thus the complexity of the linear harmonic oscillator in the ground
state is

CLMC = e
1
2 (1−ln 2). (26)

This is a remarkable result as it is a constant, independent of k, as
it has already been demonstrated by Sañudo and López-Ruiz [12].

The third example is the free hydrogen atom, or hydrogen-like
atomic ions. The ground-state density takes the form

� = Z 3

π
exp(−2Zr), (27)

where Z is the atomic number. The Shannon entropy can be writ-
ten as

S = 3 − ln

(
Z 3

π

)
, (28)

while the disequilibrium takes the form:

D = Z 3

8π
. (29)

Eqs. (28) and (29) lead to the expression

ln CLMC = S + ln D = 3(1 − ln 2), (30)

so the complexity of hydrogen-like atomic ions in the ground state
is
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