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Lower bound for the shape complexity measure of Lopez-Ruiz-Mancini-Calbet (LMC), Cpyc is studied.
Analytical relations for simple examples of the harmonic oscillator, the hydrogen atom and two-electron
‘entangled artificial'’ atom proposed by Moshinsky are derived. Several numerical examples of the
spherically confined model systems are presented as the test cases. For the homogeneous potential,
Crmc is found to be independent of the parameters in the potential which is not the case for the non-
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1. Introduction

There are several statistical measures of complexity [1,2].
A given measure becomes significant when a rigorous bound on it
is known to exist. In this Letter, we focus on the LMC (Lépez-Ruiz-
Mancini-Calbet) complexity [1], Cpmc, with the aim to consider
the lower bound problem and the value of LMC complexity for
the ground states of different quantum systems. The lower bound
is tested by presenting (a) the analytical expressions for some
simple systems: the harmonic oscillator, the hydrogen atom and
two-electron atom proposed by Moshinsky [3] and (b) the numer-
ical calculations on the spherically confined model of one and two
electron systems [4-7].

Consider a D-dimensional distribution function f(r), with f(r)
nonnegative and f f(@x)dr=1; r stands for rq, ..., rp. The Shannon
entropy [8] and the Shannon entropy power are defined as

sp=- [ romf@ar (1)
Hy = eSs s (2)
respectively. The so-called disequilibrium D has the form

Df= / f2(r)dr. (3)

The definition of the continuous version of the LMC complexity
measure is [9]

Cuvc =Hy Dy (4)
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It is known [9] that the complexity corresponding to probability
distributions given by rectangular, triangular, Gaussian and expo-
nential functions in one-dimensional position space is given by 1,
(2/3)(e'/?), (e'/2)/2, and e/2, respectively. The rectangular proba-
bility distribution, by definition, corresponds to the minimum sta-
tistical complexity. We shall now derive the lower bound for Cpyc
corresponding to a given one-electron density.

2. Inequality for the LMC complexity

To derive a lower bound for the LMC complexity we cite Theo-
rem 2 of the paper of Yafiez et al. [10]. The position-space entropy
§Q of an N-electron system in a physical state characterized by the
(normalized to N) one-electron density o(r) fulfills the inequality

J & dr)

. (5)

So +(Ingm) < Nln(
where g(r) is an arbitrary positive function. From the relationship
between the Shannon entropies coming from densities normalized
to 1 and N [10]:

S;=22 N (6)
=—+In

I=N

and taking g = f2, we obtain the inequality

Sy +ln<f fz(r)dr> >0. (7)

From the definition of the LMC complexity (4) we obtain the upper
bound

InCimc =0 (8)
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or
Cumc > 1. (9)

As was rigorously proven in Ref. [9] the lower bound saturates in
the rectangular probability distribution. In the next section analyt-
ical expressions are presented for some simple systems, such as
the harmonic oscillator, the hydrogen atom and two-electron atom
proposed by Moshinsky.

3. Analytical examples
Consider first the one-dimensional box problem i.e. the infinite

square well in one-dimension: V(x) =0, if |x| <a and V (x) = oo,
if |x| > a. Even solutions are

nmwx
we,nzACOS<—>, (10)
2a
if |x| < a. Odd solutions are
Yon = Bsin[ X (11)
o,n — 2(1 ]
if Xl <a.n=1,2,..., A=B =1/a"/? is the normalization con-
stant. The disequilibrium takes the form:
3
_ > 12
4a (12)

for all eigenfunctions. The Shannon entropy can be written as

1
Sezlna—l—/ln<cos<?>du), (13)
1

for the even solutions and

1
So=Ina—1 —/ln(sin(?)du), (14)
5

for the odd solutions. Eqgs. (12), (13) and (14) lead to the expres-
sion

1
InCimc=S+1nD =1n<§> -1 —/ln(cos(?)du) (15)
1

and

1
3
lnCuv1c=S+lnD=1n<Z> 1 —/m(sin(””T“)du) (16)

for the even and odd cases, respectively. So the complexity for a
particle in a one-dimensional box contains, except the quantum
number n, no parameter not only in the ground- but excited states,
as well. This result is closely related to the finding of Lopez-Ruiz
and Safiudo [11], that is, the complexity is constant for the whole
energy spectrum of the d-dimensional quantum infinite square
well.

It is possible to extend this result for the particle in a spherical
box, PIASB represented by the radial Schrédinger equation

d’Ry  2dRy I4+1)
dr2 ; dr + [ZE - r—2j|Rn] = 0 (17)

The radial wave function Ry (r) is given by

R = Nji(rv/2E), (18)

where j; is the Bessel function of the first kind of order | and N

denotes the normalization constant. With the Dirichlet boundary

condition imposed according to Ry (r.) = 0, one obtains through

the condition ji(rcv/2E) =0 or (rc+/2E) = uy, the energy levels
2

given by Ey ;= ;"75 where uy | denotes the k(th) zero of jj. For the

ground state, one obtains for the disequilibrium

_Sim) - 29 0.6720709

= (19)
(re)3 (re)3
The Shannon entropy can be written as
SiQ2w
Sr=In(87r}) -3+ (n ). (20)
From Egs. (19) and (20) we obtain the relation
Crme = 1.3207394, (21)

which is constant with respect to the radius of confinement r..
A similar analysis in the momentum space using the Fourier trans-
form of the position space wave function in the case of PIASB leads
to Crve = 1.517215.

As our second example, we consider free linear harmonic oscil-
lator with potential V = 1/2kx?. Then the ground-state density has

the form
K1/4
0= exp(—k'/2x?). (22)

We can immediately obtain the Shannon entropy:

k174 1
and the disequilibrium:
k1/4
D=——5. 24

From Egs. (23) and (24) we are led to the relation
1
lnCLMCZS-‘rlHD:i(l —In2). (25)

Thus the complexity of the linear harmonic oscillator in the ground
state is

Crimc 26%071“2). (26)

This is a remarkable result as it is a constant, independent of k, as
it has already been demonstrated by Safiudo and Lépez-Ruiz [12].

The third example is the free hydrogen atom, or hydrogen-like
atomic ions. The ground-state density takes the form

Z3
0=— exp(—2Zr), (27)

where Z is the atomic number. The Shannon entropy can be writ-
ten as

Z3
S:3—ln(—>, (28)
b g
while the disequilibrium takes the form:
Z3
=—. 29
8 (29)
Egs. (28) and (29) lead to the expression
InCivc=S+1InD =3(1-1n2), (30)

so the complexity of hydrogen-like atomic ions in the ground state
is
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