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We present novel complementary relations in non-equilibrium stochastic processes. Specifically, by 
utilising path integral formulation, we derive statistical measures (entropy, information, and work) and 
investigate their dependence on variables (x, v), reference frames, and time. In particular, we show that 
the equilibrium state maximises the simultaneous information quantified by the product of the Fisher 
information based on x and v while minimising the simultaneous disorder/uncertainty quantified by the 
sum of the entropy based on x and v as well as by the product of the variances of the PDFs of x and v . 
We also elucidate the difference between Eulerian and Lagrangian entropy. Our theory naturally leads to 
Hamilton–Jacobi relation for forced-dissipative systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Information theory provides one of the most useful frameworks 
in statistical modelling with broad application [1–4]. One of pop-
ular measures of information is entropy, which quantifies the un-
certainty in a random variable X , and thus the degree of disorder 
in a system described by the variable X . In sharp contrast, Fisher 
information [1] measures the amount of information an observ-
able random variable X carries about an unknown parameter θ

upon which the probability of X depends. As the inverse of the 
Fisher information is a lower bound on the variance of any un-
biased estimator of θ through Cramer–Rao inequality [1], Fisher 
information increases as the variance decreases. Alternatively, the 
Fisher information increases with the gradient of the probability 
density function (PDF) in parameter space – the narrower the PDF, 
the higher Fisher information. Thus, Fisher information quantifies 
the degree of order (certainty) or self-organisation in a system.

A great effort has been made on the generalisation of informa-
tion theory from equilibrium to non-equilibrium systems (e.g. see 
[6,7]). Noteworthy controversial issues include the proper defini-
tion of entropy and Fisher information in strongly non-equilibrium 
(nonlinear) systems and the existence of universal principle such 
as maximum/minimum entropy (or entropy production) (e.g. see 
[8] and the references therein) that governs the time evolution of 
such systems. The main aim of this Letter is to focus on some of 
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the issues which could be important in settling these controversies 
but yet have received less attention in non-equilibrium stochastic 
processes.

Specifically, first, we report on how these concepts could de-
pend on dynamic variables of PDFs. To this end, it is worth noting 
that the entropy computed from the PDF of a continuous vari-
able – the so-called differential or continuous entropy – has the 
property different from discrete entropy for a discrete variable. For 
instance, the value of differential entropy can be negative and de-
pends on the resolution [9]. This is basically because PDF itself is 
not the physical probability and it needs to be multiplied by a sup-
port to become the probability. Furthermore, differential entropy is 
not invariant under the change of variables such as Fourier trans-
form from the position x to the momentum p space, with different 
values of entropy in position and momentum representations. In 
fact, this is closely related to Heisenberg’s uncertainty principle. In 
quantum mechanics where the PDF is determined by the square of 
the magnitude of wave function, Heisenberg’s uncertainty principle 
makes position x and momentum p stochastic variables, leading to 
the opposite behaviour of the (Shannon) Boltzmann entropy pro-
jected to x (S B(x)) and p (S B(p)), respectively. However, the sum 
of S B(x) and S B(p) was shown to satisfy the following interesting 
Hirschman’s inequality [1,5]

S B(x) + S B(p) ≥ ln [πeh̄/2] , (1)

where e and h̄ are Naperian base and Planck constant divided 
by 2π , respectively.
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In this Letter, by considering a classical stochastic process far 
from equilibrium, we compare entropy obtained from the PDF of 
the position and the velocity, show how they evolve in time, and 
establish complementary relation between them through inequal-
ity similar to Eq. (1). Similar complementary relation is also illus-
trated through Fisher information. Second, we show that entropy-
related concepts including entropy production and flux depend on 
reference frames by using PDFs given by Eulerian vs Lagrangian 
variables. Mathematically, we utilise path integral formulation for 
the PDFs in order to compute statistical quantity computed along 
particle trajectory. Note that technical difficulty in computation of 
path-dependent measures might have been responsible for the lack 
of attention to this problem in the past. The remainder of this 
Letter is organised as follows: Section 2 presents the formulation 
of the problem, summarising key results on PDFs. Section 3 pro-
vides complementary relations in information through entropy and 
Fisher information. Eulerian vs Lagrangian entropy and work and 
related concepts are discussed in Section 4 where an error in a re-
cent publication [10] is identified. Our conclusions and discussion
are found in Section 5. Appendices A–E contain mathematical de-
tails including the derivation of Hamilton–Jacobi relation.

2. Formulation of the problems

We consider a strongly out-of-equilibrium initial state where 
particles are localised in space at x = x0 at time t = 0 and investi-
gate how they relax towards equilibrium under the potential V (x)
and stochastic noise f , governed by,

dx

dt
= −dV

dx
+ f . (2)

For simplicity, f is assumed to have a short memory time as 
〈 f (t) f (t′)〉 = Dδ(t − t′) and zero mean value 〈 f 〉 = 0. Here, an-
gular brackets 〈〉 denote average over f . D represents the mean 
square amplitude of f [11]. For our purpose of presenting comple-
mentary relations, it turns out to be sufficient to take the simplest 
case of V (x) = μx2/2 (μ is constant). While finding PDFs of po-
sition is rather trivial (e.g. [12]) in this case, the computation of 
path-dependent statistical measures and velocity PDFs necessitates 
a more complicated analysis such as path integral formulation, 
which is summarised in Appendix A.

2.1. Saddle-point solutions

Following path integral formulation (e.g. [13–18]), the transition 
probability p(x f , t f ; x0, 0) between initial position x0 at t = 0 and 
final positions x f at final time t = t f is formally expressed as the 
integral over all paths whose contribution decreases exponentially 
e−S as the value of action S increases [see Eq. (A.1)]. A partic-
ular path that minimises S in Eq. (A.1) thus contributes most to 
the path integral – this so-called saddle-point solution is found by 
solving Eq. (A.2) with the boundary conditions that x = x0 at t = 0
and x = x f at t = t f as:

x(t) = e−μt x0 + eμt − e−μt

eμt f − e−μt f
[x f − x0e−μt f ]. (3)

For our initial condition where x = x0 at t = 0, x0 is fixed while 
x f is a random variable due to the stochastic forcing f . Eq. (3)
enables us to find velocity along particle trajectory as

dx

dt
= v(t) = −μe−μt x0 + μ

(eμt + e−μt)

(eμt f − e−μt f )
[x f − x0e−μt f ]. (4)

By replacing t by 0 and t f in Eq. (4), we obtain the initial velocity 
v0 and final velocity v f at t = 0 and t f , respectively, as

v0 = μ

1 − e−2μt f

[
−(1 + e−2μt f )x0 + 2x f e−μt f

]
, (5)

v f = μ

1 − e−2μt f

[
(1 + e−2μt f )x f − 2x0e−μt f

]
. (6)

Eqs. (5)–(6) reveal that for a fixed x0, v0 is totally uncertain and 
non-local, depending on random variable x f at later time t = t f . 
Likewise, v f is also random and non-local, depending on random 
variable x f and the earlier position x0. This is because the saddle-
point solution is obtained for the boundary conditions x = x0 at 
t = 0 and x = x f at t = t f where x0 is fixed in our problem while 
x f is random due to the action of stochastic forcing f . That is, for 
the fixed x0, v0, v f and x f are all stochastic.

2.2. PDFs of position x and velocity v

Our initial condition x = x0 at t = 0 gives a highly localised ini-
tial PDF given by a delta-function p(x = x0, 0) = δ(x − x0). PDFs 
of x f and v f follow from Eqs. (A.3) and (6) and p(v f , t f ) =
p(x f , t f )

dx f
dv f

as

p(x f , t f ) = √
βx exp[−βx(x f − x0e−μt f )2], (7)

p(v f , t f ) =
√

βv

μ2
exp[−βv(

v f

μ
+ x0e−μt f )2]. (8)

Here, βx = μ

D(1−e−2μt f )
and βv = μ

D
(1−e−2μt f )

(1+e−2μt f )2
are inverse temper-

ature associated with x f and v f , respectively, which depend on 
time t f . Note that βx → ∞ and βv → 0 as t → 0 while βx ∼
βv → μ/D as t → ∞, meaning that PDF of x (v) becomes broader 
(narrower) towards equilibrium. Eqs. (7)–(8) give us the following 
useful mean values as:

〈x f 〉 = x0e−μt f , 〈(δx f )
2〉 = 1

2βx
, (9)

〈v f 〉 = −μx0e−μt f , 〈(δv f )
2〉 = μ2 1

2βv
, (10)

where δx f = x f − 〈x f 〉 and δv f = v f − 〈v f 〉. In Eq. (9), 〈x f 〉 =
x0e−μt illustrates the exponential relaxation of 〈x f 〉 from x0 while 
〈(δx f )

2〉 represents the mean square fluctuation of x f which in-
creases in time as p(x, t) becomes broader. In Eq. (10), 〈v f 〉 =
−μx0e−μt = −μ〈x f 〉 represents the relaxation of the mean veloc-
ity associated with 〈x f 〉 while 〈(δv f )

2〉 decreases in time as p(v, t)
becomes narrower. Specifically, Eq. (10) gives 〈(δv f )

2〉 → ∞ as 
t → 0 in sharp contrast to the behaviour of 〈(δx f )

2〉 → 0 as t → 0; 
〈(δv f )

2/μ2〉 → D/2μ and 〈(δx f )
2〉 → D/2μ as t → ∞. While each 

mean square fluctuation varies considerably in time, the product of 
the two exhibits much less variation as:

〈(δv f )
2〉〈(δx f )

2〉 = μ2

4βxβv
= D2(1 + e−2μt f )2

4
≥

[
D

2

]2

. (11)

The last inequality in Eq. (11) establishes an interesting comple-
mentary relation, which is equivalent to the uncertainty relation 
between x and p in quantum mechanics. The lower bound in 
Eq. (11) is set by the strength D of the forcing f and corresponds 
to � in quantum mechanics. Alternatively, D sets the accuracy 
in simultaneous determination of x and v (see also [1]). Our re-
sult thus explicitly shows that the uncertainty in the simultaneous 
measurement of x and v decreases in time towards its minimum 
equilibrium value.

As βx and βv are related to statistical measures such as en-
tropy S B , free energy F (see Appendix A), etc., their disparate 
values result in the difference in statistical measures depending 
on x and v descriptions, as discussed in Section 3.
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