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We present an implementation of the Deutsch Algorithm using linear optical elements and laser light. 
We encoded two quantum bits in form of superpositions of electromagnetic fields in two degrees 
of freedom of the beam: its polarisation and orbital angular momentum. Our approach, based on a 
Sagnac interferometer, offers outstanding stability and demonstrates that optical quantum computation 
is possible using classical states of light.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantum computation processes information encoded in quan-
tum systems and promises unprecedented computational power by 
exploiting features of quantum mechanics. Since its invention three 
decades ago [1,2], the fascinating concept has been developed into 
a vibrant research field linking physics and computer science with 
mathematics. A variety of quantum algorithms [3] and experimen-
tal implementation techniques [4] have been explored. However, 
due to the difficulty of the task to coherently control and individu-
ally address a multitude of quantum systems necessary in order to 
improve on the speed of the best classical computers, the science 
community is still waiting for the first numerical result calculated 
by a quantum computer that is unattainable by the current con-
ventional computer technology.

In theory it was proven already, that certain computational 
problems based on the use of oracles can be solved efficiently by 
means of quantum algorithms but not using classical ones [5]. Re-
sults in connection with period finding and the Hidden Subgroup 
Problem [6], for example Shor’s algorithm to factorize numbers 
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[7,8], indicate that there are also non-oracular algorithms that can 
only be solved efficiently on a quantum computer.

What makes quantum computation more efficient than classical 
computation? Representing inputs in terms of basis states of quan-
tum systems allows to process in parallel many inputs in form of 
superpositions of the basis states. However, the resulting superpo-
sition of transformed basis states representing the processed inputs 
would be destroyed when measured directly. Therefore, the read-
out of the processed information requires careful exploitation of 
interference effects. Moreover, entanglement is an important ingre-
dient of quantum computation for pure states [9] but its presence 
is not necessary when computing with mixed states [10] as can al-
ready be seen from the first proof-of-principle implementation of 
the Shor Algorithm using nuclear magnetic resonance and pseudo-
pure states without entanglement [11].

Also in classical optics the ingredients of quantum computing, 
as described above, i.e., superpositions, interference and indeed 
a form of entanglement exist. The similarities between parax-
ial optics and non-relativistic quantum mechanics [12] can be 
used to describe optics in terms of the Dirac formalism [13] and 
solve problems from Fourier optics elegantly using operator al-
gebra methods from quantum mechanics [14–16]. A form of en-
tanglement is present in classical vector beams [17–21], where 
the polarisation cannot be separated from the spatial dependence 
of the electric field [22]. This “classical” entanglement has been 
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used to determine the class of physically realizable Mueller matri-
ces [23], to distinguish vector beams from scalar beams [22], and 
it assisted in designing schemes to realize quantum walks with 
classical (laser) light [24]. The recent discovery of classical entan-
glement has completed the list of optical ingredients which enable 
quantum computation.

Therefore, it is interesting to study to which extent quantum 
computation can be realized by means of classical optics. Here, 
as a first step, we apply the similarities between classical optics 
and quantum mechanics to demonstrate an experimental imple-
mentation of a simple quantum algorithm, the Deutsch Algorithm, 
with classical light. The experiment serves as a proof of principle 
that an oracle-based quantum algorithm can be implemented with 
classical light analogously to quantum systems and with the same 
speed-up compared to classical algorithms.

The Deutsch Algorithm can be implemented by means of dif-
ferent quantum systems, including cavity QED [25–27], atomic en-
sembles [28], quantum dots [29,30] and nuclear spins [31]. More-
over, there are several purely optical schemes which employ the 
polarisation and spatial modes as input and output registers for the 
Deutsch Algorithm. For instance, Oliveira et al. [32] used Hermite–
Gaussian modes in a Mach–Zehnder interferometer to perform the 
algorithm, however the natural instability of the setup required ad-
ditional equipment to avoid noisy results. Another approach [33] is 
based on a Sagnac configuration with paths qubits at the single-
photon level to execute the computation. More recently, Zhang 
et al. suggested an implementation with a control gate condition-
ing the Orbital Angular Momentum (OAM) of a single photon on its 
polarisation state by means of a q-plate [34]. While some of these 
attempts already employ classical states of light (from a bright [32]
and a weak laser source [33]) the authors argue that the computa-
tion is carried out by single photons many times in parallel [32] or 
individually [33]. Here we demonstrate using Laguerre–Gaussian 
(LG) beams in a stable Sagnac interferometer that classical light 
can be used directly to perform certain quantum computations 
without the need to prepare cumbersomely quantum states of 
light.

2. Concept and theory

There is a vast literature on quantum computation and quan-
tum information treating in great detail the Deutsch problem [4,
35–37]. For instance, Audretsch [35] gives a good introduction. 
Even so, we will briefly outline the problem and its solution. As-
sume that a function

f : {0,1} → {0,1} (1)

can be accessed only via an oracle, i.e., a black box that computes 
the functional values f (x) given the arguments x. The problem is 
to determine a global property of the function: whether it is con-
stant ( f (x) = const) or balanced ( f assumes the values 0 and 1). In 
order to classically solve this problem, we need to query the black 
box at least twice. In the quantum realm, the Deutsch Algorithm 
allows us to determine this property in a single measurement.

f can be one of the following functions

f1(0) = 0, f1(1) = 0,

f2(0) = 1, f2(1) = 1,

f3(0) = 0, f3(1) = 1,

f4(0) = 1, f4(1) = 0, (2)

where f1 and f2 are constant, while f3 and f4 are balanced func-
tions.

Fig. 1. Quantum circuit for the Deutsch Algorithm. Here H stands for the Hadamard 
transformation and U f represents the oracle. The measurement is carried out in the 
first register.

In order to determine the function via a quantum oracle the im-
plementation of a unitary transformation U f is mandatory, and its 
computation is done according to the rules of modular arithmetic

|x, y〉 U f−−→ |x, y ⊕ f (x)〉 , (3)

where ⊕ represents addition modulo 2 and the state vector 
|x, y〉 ≡ |x〉 ⊗ |y〉 is the tensor product of the state of the first 
register, |x〉, with the state of the second register, |y〉. We ob-
serve that the state of the second register is dependent on the 
first register, in that sense U f is said to be a controlled operation. 
Furthermore, the Deutsch Algorithm employs a Hadamard gate be-
fore and after the call of the quantum oracle U f . In particular, the 
Hadamard gate acts on the computational basis |0〉, |1〉 as follows: 
|0〉 H−→ 1√

2
(|0〉 + |1〉), and |1〉 H−→ 1√

2
(|0〉 − |1〉).

The sequence of gates in the algorithm is described by the 
quantum circuit shown in Fig. 1. The required input state reads

|�in〉 = |0〉
[

1√
2

(|0〉 − |1〉)
]

. (4)

After the quantum circuit we obtain the state [2,38] (see Ap-
pendix A)

|�out〉 =
[(

(−1) f (0) + (−1) f (1)
)

|0〉 +
(
(−1) f (0) − (−1) f (1)

)
|1〉

]
× 1√

2
(|0〉 − |1〉) . (5)

From this state we can observe that if f (0) = f (1) there is con-
structive interference on |0〉, and destructive interference on the 
|1〉 component for the first register. The opposite is true for f (0) 	=
f (1). Finally, a measurement of the computational basis in the first 
register reveals the answer; if we obtain a result corresponding to 
|0〉 the function is constant, otherwise, if we detect |1〉, the func-
tion is balanced.

To implement the algorithm we need to encode qubits in two 
registers. For the first register we choose the linear polarisations, 
horizontal and vertical, as computational basis. In the second reg-
ister we use the OAM degree of freedom of LG beams to represent 
the computational basis states. LG beams belong to the class of 
helical doughnut modes (see Fig. 2) with a phase dependence of 
exp(ilθ), where θ is the azimuthal angle, l is known as the topo-
logical charge and carries an OAM of lh̄ per photon [39–41]. The 
sign of l indicates the handedness of the helical (or screw-like) 
wavefront of the beam. A LG mode (of zero radial order) at the 
plane z = 0 may be written as [42]

〈r, θ |l〉 ≡ ϕl(r, θ) = (r/w0)
|l| exp(−r2/w2

0)exp(ilθ), (6)

where r is the radial coordinate and w0 is the beam waist. Note 
that helical modes with different angular indices l, l′ are orthogo-
nal:

〈l′ |l〉 =
¨

R2

ϕ∗
l′ (r, θ)ϕl(r, θ) r dr dθ = δl′l, (7)
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