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The role of on-site potential disorder on phonon transmission and thermal conductance of one-
dimensional system is investigated. We found that the on-site potential disorder can lead to the lo-
calization of phonons, and has great effect on the phonon transmission and thermal conductance of the
system. As on-site potential disorder W increases, the transmission coefficients decrease, and approach
zero at the band edges. Corresponding, the thermal conductance decreases drastically, and the curves
for thermal conductance exhibit a series of steps and plateaus. Meanwhile, when the on-site potential
disorder W is strong enough, the thermal conductance decreases dramatically with the increase of sys-
tem size N . We also found that the efficiency of reducing thermal conductance by increasing the on-site
potential disorder strength is much better than that by increasing the on-site potential’s amplitude.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, potential applications of nanotechnology have generated widespread interest in studying the electronic transport of
one-dimensional systems, including carbon nanotubes, nanowires, and conducting molecules [1–3]. As is known that there is a nice
correspondence between the phonon and electron properties. The understanding of the thermal transport of one-dimensional systems will
become a significant factor in the development of future nanoelectronic circuits because of the importance of the thermal management
among nanoelements. Meanwhile, the thermal conduction property of one-dimensional systems is also of particular interest in several
possible applications of phononics [4], wherein phonons can be used to carry and process information. The manipulation and control of
phonon transport have been proposed to design thermal devices models such as thermal diodes [5–7], thermal transistor [8], thermal logic
gates [9], thermal memories [10] and thermoelectric power generation [11–13]. And experimental works such as thermal rectifier [14]
and nanotube phonon waveguide [15] have been carried out. Therefore, the physics of the thermal transport in one-dimensional systems
has attracted a great deal of attention [16–22].

Despite great progress in nanofabrication, the disorder is hard to get rid of. Along with the study of electron transport in disordered
systems, heat conduction in one-dimensional disordered system has been studied for decades. It is well known that the electron eigen-
states in a one-dimensional disordered potential are localized [23]. The electrical current thus decays exponentially with wire length,
making it an insulator. However, in phononic systems, for example, a disordered harmonic chain, long wavelength modes are extended
and a significant amount of heat can be conducted. According to Fourier’s law, we expect that the heat current is proportional to the local
temperature gradient, and the dependence of the heat current J on system size N is J ∼ N−1; while a large number of studies suggest
that the thermal transport of one-dimensional systems is a non-Fourier process [16,24–26], the dependence of the heat current J on
system size N is J ∼ Nα−1 (α is an exponent depending on different cases) [25,26]. However, most of the studies concentrated on isotopi-
cally disordered harmonic chain, where the disorder was introduced by a random distribution of the lattice mass [19–21]. As we know,
expect for the defects during the production process of nanostructures (such as nanotubes and nanowires), there is an unavoidable source
of additional disorder, the on-site potential disorder, which is used to model the effects of the environment on the sites. For example,
in DNA molecule, which is the promising materials for nanotechnology [27–29], the on-site potential describes the interaction between
two bases in a pair including several contributions such as the hydrogen bonds linking the two bases and the repulsion of the charged
phosphate groups belonging to the backbone, and the on-site potential can be modulated [30,31]. Can on-site potential disorder lead to
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phonon’s localization? How does the on-site potential disorder affect the thermal conductance? Although some studies have explored the
effect of on-site potential on thermal transport [22,32], the role of on-site potential disorder on thermal transfer has rarely been studied.
Accordingly, a better understanding of the role of on-site potential disorder on thermal transport may also lead to potential applications
based on the possibility to manipulate and control the heat flow. In this Letter, we studied the phonon transmission and thermal conduc-
tance in one-dimensional systems with on-site potential disorder which simulates the environmental complications. The transfer-matrix
method was used to calculate the phonon transmission and the thermal conductance in one-dimensional systems with on-site potential
disorder.

The Letter is organized as follows. In the next section, we presented the lattice dynamics model of one-dimensional systems with on-
site potential disorder. In Section 3 we focused on the role of on-site potential disorder on phonon localization. In Section 4 we calculated
the transmission of phonons as a function of frequency. In Section 5 we described the calculated results of thermal conductance in
one-dimensional systems with on-site potential disorder. Finally, the conclusions of this work were presented in Section 6.

2. Model and numerical method

In our study we consider a one-dimensional chain coupled at its ends (left and right) to some kind of inexhaustible heat reservoirs
which are maintained at temperatures T L and T R . The Hamiltonian of the system is

H =
N∑

l=1

[
p2

l

2ml
− Vl

]
+

N∑
l=0

k

2
(xl+1 − xl)

2, (1)

where N is the number of the atoms in the system, pl and xl are the momentum and the displacements of the atoms from their
equilibrium position, ml are the mass of atoms, k is the strength of the harmonic coupling between neighbor atoms, and Vl are the
strength of the on-site potential, which are employed to model the effects of the environment on the sites. Vl are taken to be randomly
distributed with in range [V 0 − W /2, V 0 + W /2], where V 0 is the center of the potential region and W is the disorder degree. We apply
the boundary condition of x0 = xN+1 = 0.

The system has N normal modes [x1(t), x2(t), . . . , xN(t)], and xl(t) = uleiωt , where ω is the vibration eigenfrequency. Then the eigen-
frequency and eigenvector can be obtained by the following equation,
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= 0. (2)

Based on Dean and Martin’s negative eigenvalue theory [33] as well as Wu and Zheng’s infinite order perturbation theory [34], the
eigenfrequencies and eigenvectors of the system can be obtained.

The dynamic equation of the system can also be expressed as

−mlω
2ul = k(ul+1 − ul) + k(ul−1 − ul) + Vlul. (3)

Making use of the transfer-matrix formalism, Eq. (3) can be expressed in a matrix form
(

ul+1
ul

)
=

( al
k −1

1 0

)(
ul

ul−1

)
≡ Gl

(
ul

ul−1

)
, (4)

where al = 2k + Vl −mlω
2, and Ml is the transfer matrix that correlates the vibration displacement of adjacent sites ul and ul±1. Therefore,

the global transfer matrix can be expressed as

G(N) =
N∏

l=1

Gl =
(

G11 G12
G21 G22

)
. (5)

The allowed regions of the frequency spectrum are determined from the usual spectral condition [35,36] |Tr G(N,ω)| � 2. To calculate
the transmission coefficients of an incoming plane wave with frequency ω, we only need to find a solution of the equations of motion
which to the left of the segment 1,2, . . . , N is combination of an incoming and a reflected wave and to the right is a pure outgoing wave,
i.e.,

ul = Aeiql + Be−iql, l � 0,

ul = Ceiql, l � N + 1, (6)

where ω = ω(q) = √
4/m sin(q/2), q is wave vector which is related to the frequency via the dispersion relation of heat bath. Using the

transfer matrix approach, the transmission coefficient T (N,ω) of phonon passing through the whole system can be expressed as [32]

T (N,ω) =
∣∣∣∣ C

A
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2

= 4 sin2 q

|−G11e−iq + G21 − G12 + G22eiq|2 = 4 sin2 q

[G12 − G21 + (G11 − G22) cos q]2 + (G11 + G22)2 sin2 q
, (7)

where sin2 q = mω2

k (1 − mω2

4k ) and cos q = 1 − mω2

2k .
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